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Abstract

We present the Comprehensible Video Thumbnail; an automatically generated visual précis that summarizes
salient objects and their dynamics within a video clip. Salient moving objects are detected within clips using
a novel stochastic sampling technique that identifies, clusters and then tracks regions exhibiting affine motion
coherence within the clip. Tracks are analyzed to determine salient instants at which motion and/or appearance
changes significantly, and the resulting objects arranged in a stylized composition optimized to reduce visual clut-
ter and enhance understanding of scene content through classification and depiction of motion type and trajectory.
The result is an object-level visual gist of the clip, obtained with full automation and depicting content and motion
with greater descriptive power that prior approaches. We demonstrate these benefits through a user study in which
the comprehension of our video thumbnails is compared to the state of the art over a wide variety of sports footage.

Categories and Subject Descriptors (according to ACM CCS): E.3.8 [Imaging & Video]: Video Summarization—

1. Introduction

Video thumbnails are comprehensible précis of video, es-
sential when browsing large video asset collections e. g. dur-
ing film or broadcast production, or when reviewing video
search results. Often many thumbnails are browsed in quick
succession or displayed simultaneously to the user. Impor-
tant properties of thumbnails are therefore their ability to
summarize video concisely as an informative visual gist, and
their ability to be generated with full automation so as to be
practical over large content volumes [MA08].

This paper contributes a new algorithm to generate video
thumbnails satisfying these properties. Our algorithm auto-
matically detects salient objects and temporal instants in the
video, and uses these to form a static visual composition that
summarizes both the appearance and motion of those ob-
jects, in addition to background content and camera motion.

The key technical contributions of our algorithm over prior
video summarization work are the ability to:

1. Summarize both visual content and motion at the object-
level, without any user interaction.

2. Classify and visualize different kinds of object motion,
not solely object motion in the plane [TB93,GCSS06] nor
solely camera motion [DMRD05].

3. Optimize visual composition to de-clutter the video
thumbnail.

Salient objects are identified in a video clip through analy-
sis of a dense optical flow field. A stochastic region sampling
approach identifies super-pixels with flow vectors moving
under coherent affine motion. These super-pixels are ag-
gregated into descriptions of moving objects and tracked
throughout the clip using an adapted form of particle filter-
ing augmented with mean-shift clustering (Sec. 3.1). As with
prior video summarization work we assume salient objects
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to be moving, relative to the camera reference frame. The
affine motion parameters of objects, and their appearance
information, are analyzed over time to identify significant
changes and these are filtered to produce a salience-ranked
list of temporal instants for the object (Sec. 3.2). The kind
of motion the object is subjected to between instants (e. g.
translating, turning, spinning) is classified using a novel mo-
tion descriptor tailored to this purpose, and drives selection
from a library of motion cue pictograms (arrows) borrowed
from production storyboarding (Sec. 3.3). Similarly, any
camera (global scene) motion present is classified and de-
picted (Sec. 3.4). Pictograms describing motion are warped
piece-wise to a smoothed object trajectory to produce a styl-
ized depiction of object motion. Objects are then segmented
at the relevant times and composited to complete the thumb-
nail, which is constructed on top of a background canvas
generated from video frames stitched together using existing
image mosaicking techniques (after [TB93, GCSS06]). The
arrangement of objects and pictograms is modulated by an
mass-spring optimization that mitigates against visual clut-
ter in the layout of the final thumbnail (Sec. 3.5).

We introduce the term comprehensible video thumbnail
(CVT) to describe this new form of visual gist. In the context
of our work, comprehensibility is the ability to succinctly
communicate, through a single static image, a complete and
accurate account of the video clip’s content. We evaluate this
property against three existing baselines in Sec. 4.2.

2. Related work

Digital workflows for creative production, and the explo-
sion of social video online, demand effective summariza-
tion techniques to make sense of the wealth of video data
available. Yet, video thumbnails frequently appear only in
the most basic form; a sparse set of keyframes, selected ei-
ther at predetermined intervals (start, middle, end) or using
change (shot) detection most commonly on color or motion
cues [WLH00]. A limited number of such keyframes are
displayed either side-by-side, or compiled in to a slideshow
(e. g. animated GIF) to conserve screen real estate [MA08].
Early work exploring mosaics as video summaries (e. g.
Salient Stills [TB93]) sub-sampled the frame sequence (ei-
ther regularly or at ‘editorially defined’ instants), perform-
ing affine registration and averaging to produce a visual
‘ghosting’ effect of objects and their movements within
a static video summary. Mosaicing was subsequently ex-
plored for visualization and browsing [IAB∗96, ACGM06]
through manual keyframe selection, and by Correa and Ma
[CM10] who explored linear and exponential time functions
for sampling keyframes, using digital montage to produce
elegant aesthetic summaries. Key-frame selection and mon-
tage has similarly been applied to summarize 3D motion
capture [ACCO05]. Although the simplicity of such sam-
pling approaches is attractive, the lack of content awareness
in naïve keyframe selection methods often causes salient
objects and events to be omitted from the video summary
(or creates visual confusion through inclusion of too many
frames). Animated keyframe slideshows, dynamic video
synopses [RAPP06, PRAP08], and more recently video hy-
perlapse [KCS14] are popular ways to gist the content of a
single video, such moving summaries generate undesirable
visual overload when many are presented concurrently on

screen. We focus on the distinct problem of generating a
static thumbnail summarizing video.

Few static thumbnailing techniques summarize both vi-
sual content and motion. Dony et al. propose a technique
primarily for visualizing camera motion in clips, calculat-
ing inter-frame homographies and visualizing frame bor-
ders and center-point trajectory during the clip [DMRD05].
Multiple camera viewpoints in a video are summarized by
Nomura et al. using frame collaging [NZN07] (after early
work by Mackay and Pagani [MP94]). Optionally a motion
blurring effect can be added to ghost edges of objects to
give an impression of their motion. Although primarily tar-
geted at video cartooning rather than summarization, Col-
lomosse et al. have stylized object motion using animation
cues such as speed-lines and ghosting [CRH03]. Video Tex-
tures [SSSE00, AZP∗05] summarize video in a near-static
thumbnail preserving minor movements in the scene e. g.
rustling leaves or ripples, which capture ambiance well but
cannot depict gross camera or object motion.

Goldman et al.’s schematic storyboards are arguably most
closely aligned with our goal of visually summarizing both
video content and motion [GCSS06] but fall far from an au-
tomatic solution. Goldman et al. require users to manually
matte out salient foreground objects in each frame, to manu-
ally identify salient frames include within the summary, and
to even assist background panorama construction through
manual feature matching. Whilst the latter is now trivially
automatable, the identification both of salient objects and se-
lection of their salient temporal instants is at the essence of
the video summarization problem [MA08]. Thus manually
crafted summaries are applied more as experimental tools
e. g. for Video Manipulation [KDG∗07] than as a mass video
summarization solution. By contrast, our work not only au-
tomates the processes of identification and selection, but also
composition and layout to avoid clutter (tasks that were per-
formed by the human in Goldman et al.). Furthermore we
are able to indicate dynamics with a richer vocabulary of
motion cues than Goldman et al., using our classification of
motion (e.g. translating, turning, spinning). In short, our ap-
proach is fully automated and therefore amenable to mass
video summarization e. g. to produce summaries of videos
in search results, video editing etc. where the hand-crafting
of individual video summaries is not practical.

3. Comprehensible Video Thumbnails (CVTs)

We assume a video comprises a single shot i. e. without
discontinuities caused by scene cuts. We first describe how
salient objects are identified and tracked (Sec. 3.1). We then
explain how object tracks are analyzed to determine salient
instants and motion type (Secs. 3.2-3.4). Finally we describe
the composition process to form the CVT (Sec. 3.5).

3.1. Salient object extraction

Motion relative to a static scene background is the pri-
mary cue for identifying salient objects under our frame-
work. We pre-process video to extract a dense set of optical
flow [BBPW04] vectors V(t) between the set of pixel lo-
cations I(t) within each frame, and those in its immediate
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predecessor I(t − 1). To compensate for inter-frame cam-
era movement we solve for the homography H(t) between
corresponding points in I(t) and I(t − 1) induced by flow
vectors V(t), using a standard robust estimation (RANSAC)
approach [TMT12]. The resulting camera-motion compen-
sated vectors Vc(t) = H(t)V(t) are used for subsequent pro-
cessing, where motion is significant i. e. |Vc(t)|> ε.

3.1.1. Motion parameter estimation

At each time-step we estimate motion parameters for mov-
ing objects, which are later (Sec. 3.1.2) tracked over time
to remove sporadic object detections. We have opted for in-
dependent processing of time-steps, followed by a tracking
and integration step (i.e a 2D+ t approach) over a spatial-
temporal approach to reduce complexity for lengthy clips.
For a given t, we repeatedly sample (with replacement) a set
of pixel locations p ∈ I(t) and associated optical flow vec-
tors vp ∈Vc(t) from which we infer an affine transformation
A(p,vp) that best explains the motion of set vp:

A(p,v) = argmin
A

∑
p,vp

‖ Ap− vp ‖ . (1)

where A is a rotation and translation, and ‖ . ‖ the L2 norm:

A =

[ cosθ −sinθ Tx
sinθ cosθ Ty

0 0 1

]
. (2)

The parameter tuple {θ,Tx,Ty} is computed from the input
sets of 2D column vectors (p,vp) as follows:

p′ = p− 1
|p|

|p|

∑
i=1

pi. (3)

v′p = v− 1
|vp|

|vp|

∑
i=1

vpi . (4)

M =
|p|

∑
i=1

p′ivp
′
i
T
. (5)

R = M(MT M)
1
2 . (6)

yielding R the 2× 2 upper-left of A from which θ is readily
obtained via arc-tangent, and

s =

√√√√ 1
|vp|

|vp|

∑
i=1

v′pi/
1
|p|

|p|

∑
i=1

p′i . (7)

[
Tx
Ty

]
=

1
|vp|

|vp|

∑
i=1

v′pi −R
s
|p|

|p|

∑
i=1

p′i . (8)

Points p are chosen to lie within spatially coherent regions
(super-pixels) obtained via [ASS∗12], preventing the motion
parameter estimate being drawn from multiple targets. The
first point sampled for inclusion to p is drawn from Vc(t).
Subsequent points are sampled from the subset of Vc(t) that
fall within the same super-pixel as the first point. Typically
we work with fewer than 100 super-pixels per frame, each
of variable size around 1000 pixels. Note p are drawn from
all super-pixels within the frame with |Vc(t)|> ε.

Figure 1: Automatic salient object location. Point clouds
generated by our fully automatic particle filtering and clus-
tering approach track salient objects, which form the basis
for our thumbnails (see SAFARI2). Inset: visualization of
corresponding clusters in 5D motion parameter space. Be-
fore (left) and after (right) particle filter.

The outcome of the iterative sampling and affine motion
estimation process is a set of transformations {A(p1,vp1),
... ,A(pn,vpn)} that describe each sampling. In practice we
use |p| = 20 samples (i. e. |p| � |Vc(t)′|) and n = 100 iter-
ations. We augment the 3 parameters of A(pi,vpi) with the
centroid of pi i. e. (µx,µy) = ∑

|p|
1 pi yielding a point in 5D

space (µx,µy,θ,Tx,Ty) that describes both the motion and
position of p at time t.

Thus after sampling n iterations we obtain a set of 5D
points, written A(t) that describe the motion and position
of moving objects present at t. Fig. 1 (inset) illustrates a set
of such estimates derived from a single frame. Obtaining a
distribution of estimates for object motion is preferable to
deriving a single estimate from all vectors, since optical flow
generates frequent outliers in real-world data.

3.1.2. Motion parameter filtering

We refine the noisy set of motion models A(t), obtained on
a per-frame basis, by filtering out those corresponding to
short-lived or erratically moving objects which we assume
to be non-salient. This is achieved by tracking the 5D cloud
of motion estimates over time using a particle filter [IB98].

We define a set of c particles for each frame, written
X t = {x1

t ,x
2
t , ...,x

c
t } with super-script indicating the index,

within the 5D space (µx,µy,θ,Tx,Ty). The particles describe
the spatio-temporal attributes of moving objects in the video.
These are the hypotheses, and are computed progressively
for each frame using hypotheses from the previous frame
Xt−1 and observed data from the video A(t). For conve-
nience we use notation A(t) = {z1

t ,z
2
t , ...,z

n
t } to denote the

latter. Note that Xt and A(t) are maintained separately de-
spite being defined in the same 5D space. In our implemen-
tation we use a time-constant particle count of c = 500.

Each hypothesis has associated with it a prior probabil-
ity p(xi

t) representing the likelihood that the hypothesis de-
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scribes the motion of a salient object. At t = 1, X1 are ini-
tialized randomly and p(xi

1) =
1
c sets a uniform prior.

At each time-step, the posterior for each hypothesis is:

p(xi
t |A(t)) ∝ p(xi

t−1)p(A(t)|xi
t). (9)

p(A(t)|xi
t) = 1− 1

|J| ∑j∈J
N (|xi

t − z j
t |;Σ). (10)

and J ⊆A(t) s.t. |z j
t − xi

t | < T , i. e. J indicates the subset of
motion models local to hypothesis xi

t . N indicates a normal
variate with a specified mean and a covariance Σ. Parameters
T and Σ are set empirically to 105 and 10 respectively, en-
coding an assumption of expected change in 5D space-time
motion parameters over one time step.

Under the above framework, particle filtering proceeds as
follows. First, a population of hypotheses Xt is computed by
sampling m hypotheses stochastically from Xt−1 with a bias
to p(xi

t−1). Second, the hypotheses are updated through the
addition of Gaussian noise to inject diversity:

xt ← xt +N (0;Σ). (11)

Third, the posterior probabilities for Xt are evaluated against
the data A(t) for that frame via (9). The prior probabilities
of Xt are then updated:

p(xi
t)← p(xi

t |A(t)). (12)

Thus c = 500 hypotheses are evaluated using a Gaussian
distance (eq. 11) that marginalizes over all the 5D parame-
ter estimates sampled from the frame. The result is a set of
filtered hypotheses Xt that cluster around temporally stable
estimates within A(t). The particle filter improves temporal
coherence of A(t) and tightens object localization (Fig. 1).

3.1.3. Object clustering

Finally, we cluster the filtered motion estimates X into dis-
tinct salient objects under the assumption that an objects
exhibit smooth variation (i. e. temporal coherence) in both
their location and affine motion parameters. We run mean-
shift over a 6D representation of hypotheses from all time
instants, comprising the 5 dimensions of Xt plus time, i. e.
(µx,µy,θ,Tx,Ty, t). Typically this results in groupings that
reflect independent salient objects. Any over-segmentation
due to long or complex trajectories is resolved by aggregat-
ing pairs of clusters where over half of the points in their
distributions arise from the same tracked particle.

The result is a set of clustered objects O = {O1, ...,On}
where each object is described instantaneously by a 5D point
cloud On(t ∈ Tn) ∈ <5, where Tn is the set of times Tn =
[tn, ..., t′n] at which object On exists in the video.

3.2. Temporal salience

For each object On we wish to identify a sequence of salient
time instants τn ∈ {τ1

n, ...τ
m
n } where τn ⊆ Tn at which the

object exhibits significant change in its motion parameters
and visual appearance. We enforce τ

1
n = tn and τ

m
n = t′n. The

object will appear in the thumbnail at these salient moments.

Figure 2: Identification of temporally salient frames
SKAT ER. Turning points (green) are identified in 1D pro-
jection of On(t) (a descriptor of object location and mo-
tion parameters) under PCA and ranked by a score derived
from magnitude of both the turning point, and the appear-
ance change at that time. The top 6 salient instants (purple)
are used in the CVT. Graph data: raw (blue), smoothed (red).

We first identify significant variance in signal On(t) by
performing PCA over On(T ) and projecting the time vary-
ing mean Ôn(t)∈<5 to the principal eigenvector. This yields
a noisy 1D projection which is passed through a non-linear
low-pass filter [Fri84] to obtain a smooth time varying sig-
nal Ôn

′
(t), visualized in Fig. 2. Turning points in this signal

indicate significant variations in either or both of: a) the po-
sition of the object; b) its affine motion parameters. This is
desirable as we wish to depict the moments at which the ob-
ject significantly changes the way it moves, whilst also en-
suring representative coverage of the object’s motion path in
the thumbnail. The time indexes of these turning points form
our set τn ∈ {τ1

n, ...,τ
m
n }. Often many turning points will oc-

cur in Ôn
′
(t) either due to noise, or due to the complexity of

motion in the clip. We therefore assign a ranking scoreR(τ)
to each turning point, and use only the top ranking instants
to avoid clutter in the thumbnail (m = 6 for our results).

Significant changes in motion e. g. a sharp turn are often
accompanied by significant changes in the object’s appear-
ance in the clip. We introduce function Ψ(On, t) encoding
the appearance of object On at time t. The function is de-
fined using a Bag of Visual Words (BoVW) representation
(frequency histogram) built over HOG features. As changes
in visual appearance are a cue we wish to visualize preferen-
tially, we regard turning points co-occurring in both Ψ(On, t)
and Ôn

′
(t) as most salient leading to a ranking score defined

by a weighted combination of the two:

R(t;On) = α

∣∣∣∣∣δÔn
′
(t)

δt

∣∣∣∣∣+β

∣∣∣∣Ψ(On, t
δt

∣∣∣∣ . (13)

Weights (α,β) are set to the reciprocal of maximum

change in each signal (e. g. α = 1/maxt

∣∣∣δÔn
′
(t)/δt

∣∣∣ ) to
automatically balance the two terms.
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Figure 3: Visualization of the feature space used to deter-
mine motion type via measures Q1 (eq. 14) and Q2 (eq. 14).

3.3. Object motion classification

Our video thumbnails depict not only simplified motion
paths of objects (c.f. subsec. 3.5.2) but also the type of mo-
tion the object undergoes along that path. Three types of mo-
tion cue commonly depicted in production storyboarding are
used in our work: ‘translation’, ‘turning’ toward or away
from the camera, and rotation (‘spinning’), c.f. Fig. 3.

Having established the set of salient instants τn for each
object On, we proceed to classify the motion the object un-
dergoes within each time interval. We introduce notation
(τi

n,τ
j
n) to indicate the start and end frames of a particu-

lar interval we wish to classify. The motion classification
is performed by analyzing the pattern of optical flow vec-
tors local to the object sampled from this pair of frames. We
first calculate a mask covering the object, using the point
clouds On(τ

{i, j}
n )∈<5. A bounding box is trivially obtained

from each frame using two of the five dimensions which
directly encode object position (subsec. 3.1.1). The box is
used to initialize foreground pixels for a Grab-Cut segmenta-
tion [RKB04] thus deriving the object’s mask, and so isolate
flow vectors local to the object.

Fig. 4 illustrate how different patterns of optical flow vec-
tors local to the object enable discrimination between the
three motion types. We consider both the camera-motion
compensated flow vectors Vc(τ

{i, j}
n ), and those same vec-

tors with the global motion of the object (i. e. the average
of Vc(.) under the mask) subtracted, writing this modified
’local’ vector field as Vl(.).

Consider a spinning object. Disregarding any global ob-
ject motion present, we would expect to see a similar pattern
of flow vectors i. e. similar Vl(τ

i
n) and Vl(τ

j
n) under the mask.

Thus computing Histograms of Flow (HoF) from each of
these fields would result in two similar histograms H(Vl(τ

i
n))

and H(Vl(τ
j
n)) containing non-zero elements. Thus we can

decide whether an object is spinning or not by considering
the χ

2 distance between the pair of histograms, and the area
under the histograms with respect to a small threshold εQ1.
Thus we define a quantity Q1 as follows, in which low values
signify presence of a spinning object:

Figure 4: Start (τi
n) and end (τ j

n) frames from a Turning, Ro-
tating and Translating object — flow vectors within the mask
(red) and Histogram of Flow (HoF), inset.

Q1 =


χ

2[H
(

Vl(τ
i
n)
)
, H

(
Vl(τ

j
n)
)
].

if maxx(|H(x)|)> εQ1,

∞ otherwise.

. (14)

We introduce a second quantity Q2 to help discriminate
between translation and turning. In the case of an object sim-
ply translating, we would expect similar flow fields in Vc(τ

i
n)

and Vc(τ
j
n) under the mask. An object turning toward or away

from the camera would generate different fields. Thus we
define Q2 as below, where low values signify presence of a
translating object – and high values, a turning object:

Q2 = χ
2
[
H
(

Vc(τ
i
n)
)
,H
(

Vc(τ
j
n)
)]

. (15)

We do not consider objects that aren’t moving at all, since
this is a prerequisite for their detection in Sec. 3.1.

Thus space Q1×Q2 enables discrimination between the
three motion types. We perform one-time training via a lin-
ear SVM using videos containing 20 objects of each type
in order to learn, rather than prescribe the decision bound-
aries indicated in Fig. 3. Being linear there are no meta-
parameters to train and all data is used. When rendering
a thumbnail, the SVM prediction drives the choice of pic-
togram used to depict the motion.

3.4. Camera motion classification

We include a simple indicator of camera motion within the
thumbnail using annotations attached to the exterior of the
thumbnail, e. g. a horizontal or vertical arrow indicates a pan
left-right or a tilt up-down respectively. Camera zoom in or
out is depicted using arrows on the four corners pointing to
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Figure 5: Camera motion classification: Responses of the
flow descriptor (4 of 6 motion types shown for brevity).

or away from the thumbnail center. Since we wish only to
indicate which of these 6 types of camera motion dominates
(if any) we apply a coarse classification technique.

Camera motion present in any frame is computed through
analysis of the optical flow field due only to camera motion
i. e. Vc(t)−V(t). Flow vectors are averaged within a 5× 5
spatial grid over the frame (Fig. 5) each of which yields a
vector δ(Vc(t)−V(t))

δt ∈<2. Concatenating these vectors forms
a 50D motion descriptor which we use to train a linear Sup-
port Vector Machine (SVM) in a one-vs-all framework, us-
ing several training examples of each kind of camera mo-
tion. We find this more robust than prescribing heuristics to
identify motion type. The response of the SVM prediction is
thresholded to enable detection of no camera motion.

Morphological filtering (sieving [BHLA96]) is applied to
the time sequence of these predictions to improve their tem-
poral coherence and mitigate noise. A simple majority count
of frame classifications is then used to determine the kind of
camera motion (if any) present.

3.5. Composition and Rendering

Like many previous video summarization techniques, we
use image mosaicking [TMT12] to generate a ‘background’
panorama upon which to build our thumbnail. The geome-
try of the panorama depends greatly upon the camera mo-
tion present; a typical width would be around 2000 pixels
for a camera pan. Video frames I(t) are sampled regularly
(e. g. every 10 frames) and combined using temporal me-
dian filtering (after [TB93]) to create a seamless background.
Frame differencing is performed to down-weight contribu-
tions from non-background objects, although some artifacts
inevitably remain in the form of ghosting (which is some-
times also helpful in communicating the thumbnail content).

3.5.1. Dynamic layout

Force-directed algorithms have been widely used in graph
representations to produce aesthetically pleasing layout

through simplified simulations of physical forces. Here we
develop a mass spring system to assist in the layout of
objects and their associated arrows within the thumbnail,
preserving approximately correct spatio-temporal positions
whilst allowing these to be perturbed in order to enforce re-
duced visual clutter and overlap on the panorama.

We apply Baraff and Witkin’s implicit Euler method
(IEM) for our simulation [BW98], over a fully connected
graph of objects each of which is connected via a repulsive
spring with length proportional to the distance between ob-
ject centroids in their pre-optimization positions.

Briefly, in the IEM each object (graph node) is associated
with a scalar mass (here modeled as constant) and a vector
3-tuple: position, velocity and force. The system’s state is
updated via computation of acceleration at each node, under
Newton’s second law, using mass and an estimate of force.
Force is calculated using a combination of spring length and
tensile strength. In the IEM all nodes are solved for simulta-
neously via a linear system at each time-step.

In our system the tensile strength of the repulsive spring is
set in proportion to the proximity of the object to its closest
neighbor (note the force is in these cases negative). Objects
are also anchored to a node representing the initial (unopti-
mized) position of the object. These anchoring springs are
attractive, with uniform length and tensile strength. Thus the
parameters in our IEM model are the constants of propor-
tionality on the repulsive springs, which are set to 5 times
that of the anchors. This provides a good balance between
rigidity and the ability to de-clutter the composition, al-
though some extreme cases of clutter can occur that would
benefit from greater rigidity still (Fig. 10) we have used the
same parameters for all our reported results.

Fig. 6 presents two instantiations of the mass-spring sys-
tem (inset) on the SKAT ER and MOTO2 sequences where
the object ‘doubles-back’ upon its trajectory (within the
reference frame of the background) and thus is in danger
of cluttering the visual composition. The dynamic layout
successfully resolves the clutter. Once object positions are
optimized they are composited onto the background using
gradient-domain blending [PGB03]. Note that objects are
segmented from the video frames for compositing using a
mask obtained via Grab-Cut segmentation (c.f. Sec. 3.3).

3.5.2. Arrow placement

Having selected the appropriate type of arrow for each
salient interval during motion classification, rendering of the
arrow itself proceeds as follows.

Observing that a simplified abstraction of object trajec-
tory is desirable in visual gist, we fit a smooth polyno-
mial to the tracked data (Fig.7) specifically the location of
the object at the set of frames identified as turning points
(Tn =

[
tn, ..., t′n

]
) in the 5D motion parameter space (sub-

sec. 3.1.1). These points are expressed in spatio-temporal
(xi,yi, ti) and a quadratic polynomial fitted via least-squares:

y = at2 +btx+ cx2 +dx2 + e. (16)

To fit the polynomial, values for x must be densely interpo-
lated from the temporal samples in Tn. We fit a further (quin-
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Figure 6: Dynamic layout via optimization of a mass-spring system (inset) reduces visual clutter by perturbing the position of
objects (and associated arrows) on the background. Objects on the thumbnail (red) are inter-connected via repulsive springs,
and anchored to their original positions (green) via contracting springs. Arrows indicate the resulting repositioning of objects.
Top: SKATER (c.f. Fig. 4.1). Bottom: MOTO2 (c.f. Fig. 9)

tic) polynomial via least-squares to infer this relationship.

x = f t5 +gt4 +ht3 + it2 + jt + k. (17)

The smoothed trajectory in (x,y, t) is in effect a quintic path
over a quadratic surface in (t,x) space, and is capable of
turning 6 times to accommodate intervals between all m = 6
objects on the thumbnail (see Sec. 3.2). Different orders of
polynomial (17) could be chosen for different m. Curve (16)

Figure 7: Smoothed object trajectory (blue) in (x,y, t) space
fitted to candidate salient points Tn (green) on the raw
tracked motion path (magenta). Fragments of the smoothed
trajectory are used to form a curvilinear basis for warping
the arrows (inset), which is projected to the image plane on
a short perpendicular offset to the motion path to de-clutter.

may be trivially projected orthonormal to (x,y) yielding the
smoothed motion path over the thumbnail (Fig. 7).

Tangents and normals to (16) define a curvilinear basis
(Fig. 7, inset) between limits [tn, t′n] within which we warp
a single pre-supplied bitmap of an arrow to provide motion
cues for translating and turning movements. The warped ar-
row is drawn offset to the edge of the bounding box of the
object, to avoid clutter (the edge intersecting the positive
normal vector is used). Finally, arrows are annotated with
numbers to further enhance comprehension.

4. Results and Discussion

We evaluated our approach over a database of Creative Com-
mons 720p sports clips depicting objects moving with vary-
ing complexity from simple translations, turns and spins to
multiple changes in direction. The expressivity of the pro-
posed approach is explored in Sec. 4.1, and a comparative
evaluation against the state of the art is reported in Sec. 4.2.

4.1. Gallery of results

Fig. 8 showcases a representative sample of comprehensible
video thumbnails (CVTs), all of which have been generated
completely automatically with no user interaction. Several
additional examples of CVTs are included in Fig. 9 and all
source videos are included in the supplementary material.
In each case we compare visually with the ‘Salient Stills’
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Figure 8: Comprehensible Video Thumbnails (CVTs) generated by our proposed algorithm (right), and comparison (left) to
Salient Stills (temporally sampled) [TB93] and Goldman et al.’s Schematic Storyboard [GCSS06]. Sequences are (top-bottom):
SKAT ER, MOTO, BIKE1, and BIKE2. See Sec. 4.1 for discussion, and Sec. 4.2 for quantitative study.

keyframe sampling technique due to Teodosio et al. [TB93]
(sampling regular keyframes to form a mosaic and com-
positing the foreground object with time-varying opacity)
and with the Schematic Storyboard technique of Goldman
et al. [GCSS06]. As per the latter method, Goldman et al.’s
thumbnails have been created using manual effort to select
both salient objects and identify the salient frames for inclu-
sion in the thumbnail (see Sec. 4.2).

The SKAT ER sequence demonstrates a CVT correctly

constructed in the presence of clutter — i. e. salient changes
in motion and appearance occur at the same point within
the background reference frame which would lead to object
over-draw (c.f. Fig. 6). The mass-spring system correctly
perturbs the positioning of the objects and arrows in order to
reduce visual clutter whilst conserving approximately cor-
rect positioning. This CVT illustrates the advantage over
previous thumbnailing techniques that do not address the
problem of clutter. For example, [TB93, GCSS06] would
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both either omit or merge objects unrecognizably depend-
ing on the panorama generation method adopted. SKAT ER
also exhibits all 3 types of motion handled by our classifier:
rotation (at step 2); translation between 2-3; turning toward
camera at 1-2, 3-4 and away from camera at 4-5. Visually it
is clear that existing thumbnail methods contain significantly
more limited descriptions of the motion in this clip. Domi-
nant camera motion (right-left) has been correctly identified.

The MOTO sequence depicts a tight turn, correctly styl-
ized via the warped arrows, and multiple translations. The
salient instants picked here automatically are broadly in
line with those manually selected via the human expert in
[GCSS06]. Camera motion has been correctly identified. In-
accuracies in object segmentation are present, though are in-
evitable due to full automation and do not detract from the
visual gist of the scene. Here the identification of salient ob-
ject instances for composition produces a visually clearer
thumbnail versus Salient Stills [TB93] where later frames
(with the bike in the far distance) are assumed more salient
and so appear more opaque. Complex sequences of bike
hops and spins are captured effectively in the CVTs of both
BIKE1 and BIKE2. This thumbnail further illustrates the
importance of dynamically selecting appropriate temporal
samples in the sequence over regular keyframe sampling,
which generated significant clutter in [TB93] and leads to
omission of salient object instances in [GCSS06]. The man-
ual selection of 4 irregularly spaced keyframes in [GCSS06]
can not depict the rich gamut of turns and spins necessary to
communicate the content.

Each CVT took 5-10 minutes to render using our unopti-
mized Matlab code on an Intel i5 2.27Ghz PC with Nvidia
GT620. Most time is spent on the particle filtering and mean-
shift clustering (∼ 55%), then on mosaicing (∼ 25%), arrow
warping and compositing (∼ 10%), and mass spring opti-
mization (∼ 10%). Salient instant determination and motion
classification are near-instantaneous. Representative times
exclude pre-computation of V(t) (optical flow via OpenCV)
which takes under a minute on our GPU but takes several
hours on CPU. The time complexity is linear with respect
to frame count. These times could be likely be considerably
lowered with an optimized C++ implementation.

4.2. Visual comprehension

The goal of video summarization is to produce a compre-
hensible précis of the clip that gists content succinctly. We
designed a visual comprehension test to quantify alignment
between users’ understanding of a clip’s content having first
viewed a thumbnail, with the actual content of that clip when
it is subsequently played. Seven video clips were selected
from our dataset containing examples of rotation, turning,
and translation along both simple and complex paths. Five
forms of thumbnail were generated from these clips: A) the
proposed method; B) a concatenation of the first, middle
and last frame; C) an automatic Salient Still of Teodosio
et al. following the temporal sampling strategy outlined in
[TB93]; D) a Salient Still as per C but with keyframes manu-
ally selected; E) a storyboard following the method of Gold-
man et al. [GCSS06]. As the latter two are a semi-manual
methods, we followed the guidelines in [GCSS06] when
picking the objects and frames to include in the thumbnail.

A set of 46 participants were recruited with demographic
approximately even across the 18− 30 and 31− 55 age
groups, and a 60 : 40 male:female ratio. Users were asked
"How completely and accurately do you feel the thumbnail
represents the content of the video?" with an integer score
5 ("perfectly in line with my expectations") to 1 ("totally
wrong") used to express the answer. In addition to aggre-
gate data presented for each thumbnail type and clip in Ta-
ble 1 a statistical significance test (paired 2-tailed t-test) was
performed for each pair of thumbnail types under the null-
hypothesis that the pair performed with equivalence.

Across all clips the naïve start-middle-end (SME)
was outperformed by both our proposed technique and
[GCSS06]. Visual comprehension was increased by 43%
and 26% on average. The pattern persisted across all clips
evaluated (34− 80% and 16− 44% respectively), and p-
values of ≥ 95% for all comparisons indicated these re-
sults were statistically significant. Salient Stills [TB93] con-
structed using manually selected keyframes ( [TB93]) scored
higher than those created by automatically regularly sam-
pling keyframes ( [TB93]-Auto) for the most-part (p-values
≥ 95 for 5 of the 7 clips indicated statistically significant
gain). The latter outperformed the nav̈e SME approach with
statistical significant in less than half the clips tested. We
conclude that simply adding more frames into a mosaic-style
thumbnail does not improve comprehensibility; a degree of
selectivity is required especially in cluttered cases such as
BIKE1, BIKE2 and SKATER.

Comparing CVTs to [GCSS06] revealed consistently
higher mean comprehension (from left to right clips as
listed; 13%, 24%, 13%, 6%, 1%, 7%, 56%, 6%). However
only clips exhibiting complex motion BIKE1 and SKAT ER
achieved p-values ≥ 95% indicating statistical significance,
although CAR1 and SNOW came very close to this de-
facto threshold for significance. Interestingly, p-values in-
dicating very little difference in performance were returned
from BIKE2, MOTO and CAR2 containing simpler mo-
tion trajectories. Comparing CVTs to Salient Stills we ob-
serve average performance gains of 31− 49% for the man-
ual and automated approaches, which were in all but one
case (CAR1, [TB93]-Man) statistically significant. Notably,
the manual methods [GCSS06] and [TB93]-Man, are either
outperformed or equaled by CVTs in all cases. A significant
advantage of our method is its full automation. Although oc-
casional segmentation artifacts occur (Sec. 5) these do not
appear to disadvantage the comprehensibility of CVTs ver-
sus other methods evaluated.

5. Discussion of Limitations

Inevitably in an automatic system, artifacts may be intro-
duced due to the complexity and diversity of general video.
Fig. 10 provides visual examples of artifacts and we discuss
how these arise in the context of each pipeline stage:
Salient Object Extraction. Only moving objects are as-
sumed salient yet objects static with respect to the camera
could also be desirable for inclusion. Stationary salient ob-
jects e. g. the ramps in BIKE1/2, or billboards in SKATER,
appear within the background but may become occluded
during layout. In the examples given, it is semantically ac-
ceptable to occlude such background objects but this may
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Thumbnail BIKE1 BIKE2 CAR1 CAR2 MOTO SKAT ER SNOW Mean
S-M-E 2.70 ± 0.79 2.41 ± 0.88 2.98 ± 0.86 2.78 ± 0.81 3.15 ± 0.99 2.02 ± 0.93 3.20 ± 1.00 2.75
[TB93]-Auto 2.65 ± 0.79 2.78 ± 0.87 3.20 ± 0.75 3.15 ± 0.76 2.50 ± 0.75 1.85 ± 0.84 2.43 ± 0.81 2.65
[TB93]-Man 3.13 ± 1.02 2.22 ± 0.84 3.91 ± 1.01 2.98 ± 0.95 3.00 ± 0.89 2.52 ± 0.91 3.22 ± 0.94 3.00
[GCSS06] 3.30 ± 0.84 3.26 ± 0.88 4.00 ± 0.92 3.74 ± 0.80 3.61 ± 0.98 2.35 ± 0.85 4.04 ± 0.73 3.47
Ours (CVT) 4.11 ± 0.97 3.67 ± 1.32 4.24 ± 1.04 3.78 ± 1.13 3.87 ± 1.19 3.65 ± 0.99 4.28 ± 0.81 3.94

Table 1: Visual comprehension user study over 46 participants, showing per clip mean average (±1σ) user scores on scale 1
(poor) to 5 (perfect) assessing the accuracy and completeness of each type of visual thumbnail. Refer to Sec 4.2.

Figure 9: Gallery of additional CVT results from a variety of clips (see video for sources); From left to right, and top to bottom:
CAR2, HORSE2, LENA, SNOW2, HORSE3, SAFARI, CAR1, SNOW1.

not be generally valid. We do not assume all moving parts of
a scene to be salient. However we observed moving clutter
in the scene background sometimes induces false negatives
due to reduced coherence in Vc(t) local to objects.
Salient Instant Detection. By detecting significant changes
in motion, then selecting the subset of instants with signifi-
cant appearance change, it is possible we will miss stationary
objects that significantly change appearance (e. g. color).
Object Segmentation.We rely upon GrabCut to crop ob-
jects from video for arrangement in the CVT with the region
of interest initialized using the point cloud from the parti-
cle filter (Sec. 3.1). Segmentation may partially fail when
clutter is present in the image, or this point cloud does not
completely cover the object. This can lead to ‘missing parts’
of objects, such as the headless biker in parts of MOTO
and BIKE2 (Fig. 10a). Alternative segmentation algorithms
could be trivially substituted.
Motion Classification. Currently we are limited to depict-
ing only the most likely camera or object motion type, as
determined via the two SVMs. If multiple competing mo-
tions occur within equal dominance then the classification
and cue depicted can be arbitrary.
Dynamic Layout. We limited CVTs to a maximum of 6
salient instants, chosen empirically to reduce visual clutter.
Only very small adjustments are required to resolve even
complete occlusions (Fig. 6) if object count is low. How-
ever the mass-spring system can pull objects far from their
original positions if too many objects inter-occlude. Fig. 10b

shows a severe example where the camera motion zooms out
to track a runner such that all instants overlap, causing object
layout to exceed the panorama boundaries in places.
Mosaicing and Composition. Although inter-frame homo-
graphies may correctly model camera and/or parallax mo-
tion, the approach we use to estimate them assumes more
background pixels than foreground in any given frame. For
large objects this may fail. Some faint ghosting of objects
can remain in the background despite the temporal median
filtering. Too much background included within an object
mask (over-segmentation) introduces composition artifacts
observed in Fig. 10c. Composition could, in principle, cause
overdraw of older objects (if small) with arrows associated
with newer objects (if large), however the dynamic layout
promotes a separation that mitigates this possibility.

6. Conclusion

We proposed comprehensible video thumbnails (CVTs) —
static images that communicate a video’s content through
selective presentation of salient objects in the scene and
stylized depictions of their motion. CVTs depict a broader
gamut of motion types than prior work i. e. translation, turn-
ing and spinning objects and notably the algorithm operates
fully automatically with no user interaction. User compre-
hension tests show statistically significant improvements in
communicating a visual gist of a clip vs. nav̈e keyframe se-
lection (start, middle, end frames). Benefits are indicated
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Figure 10: Failure cases: a) segmentation errors cause loss
of visual fidelity (however this may not detract from com-
prehensibility, Sec. 4.2); b) dynamic layout can not recover
from severe clutter (red) without major shifting (blue); c)
composition errors due to poor mosaicing and masking.

over prior state of the art specifically Schematic Storyboards
[GCSS06] and Salient Stills [TB93], and these are statisti-
cally significant for videos exhibiting more complex motion.
The significant benefit of CVTs is their full automation, en-
abling application to video summarization e. g. in file brows-
ing or video search.

Despite these promising results, CVTs exhibit a number
of limitations in their current form (Sec. 5). It may in fu-
ture be possible to augment our object detector (based on
motion and appearance) with a purely appearance based ap-
proach such as [ADF12], or change the segmentation algo-
rithm (GrabCut) employed. Salient object detection and seg-
mentation in general video remains an unsolved Computer
Vision challenge and is only one (substitutable) part of our
proposed pipeline. As automated segmentation algorithms
advance, so too will visual comprehension via our technique.
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