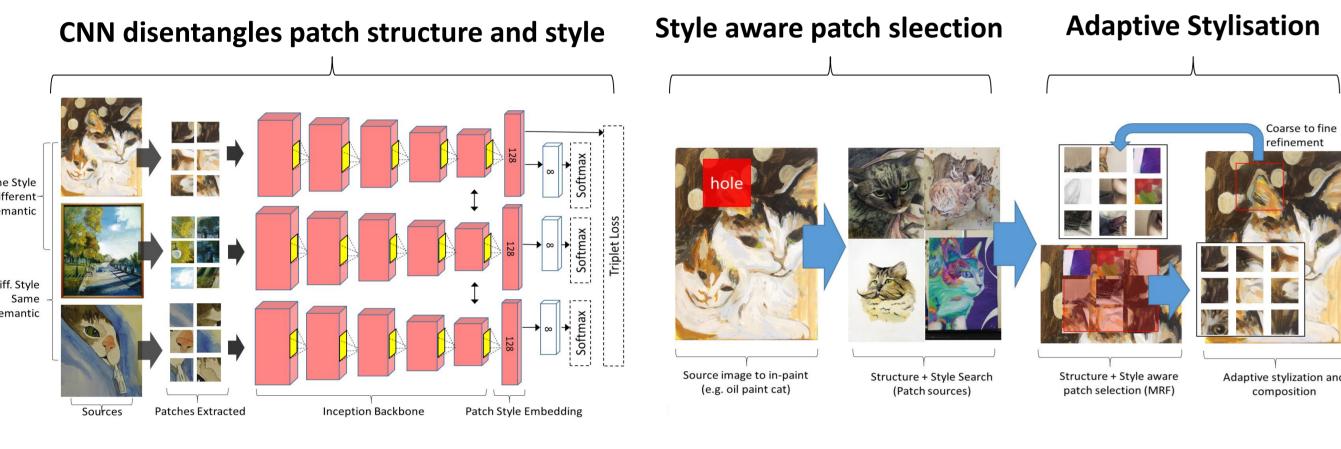
Disentangling Structure and Aesthetics for Style-aware Image Completion Andrew Gilbert¹ John Collomosse^{1,2} Hailin Jin² Brian Price²

Introduction - Image Completion

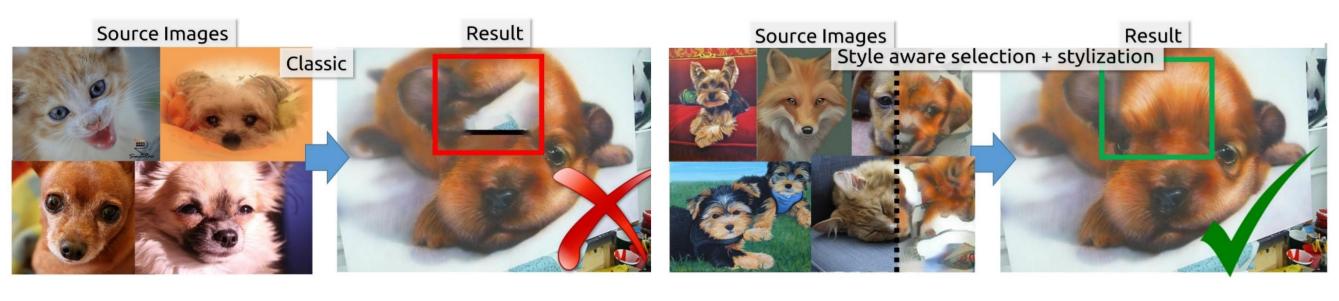
Image completion (or "in-painting") enables the removal of unwanted objects of artefacts in images. Most prior work operates by copying patches from elsewhere in the same image, or from auxiliary image collections (AICs), so as to hallucinate plausible texture to in-paint the unwanted regions. Previous work focused on the in-painting of photographic images only, with patch selection and coping driven by structure or semantic similarity. Our novel contribution is a novel AIC based image completion approach that explicitly enforces both structural and style (aesthetic) consistency in the patch selection process, and adaptively stylizes patches for aesthetic consistency during the copying process.



Disentangling Patch Structure and Style

A triplet convnet is trained to disentangle patch structure and style, driving:

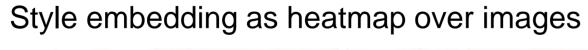
- Style and structure aware visual search for candidate patches in the AIC;
- 2. A **style-aware global optimization** for patch selection;
- 3. Adaptive stylisation of patch content to enable seamless image completion

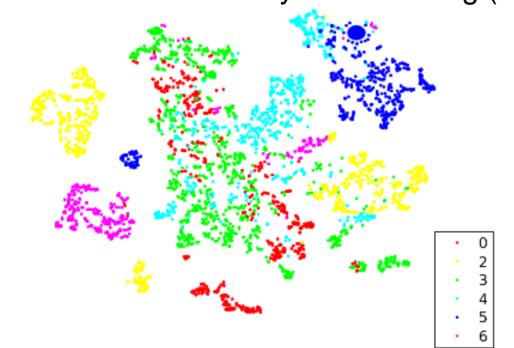


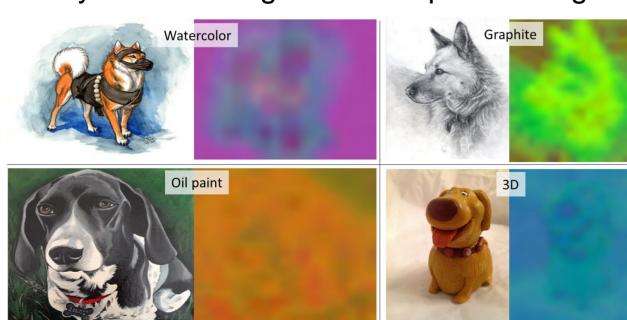
Candidate Patch Search

A style and structure aware image search is performed to identify relevant images from \sim 66.8M images from which raw patch data may be sampled Learnt feature embedding using two triplet Inception-v3 convnets:

T-SNE Visualisation of style embedding (BAM!)





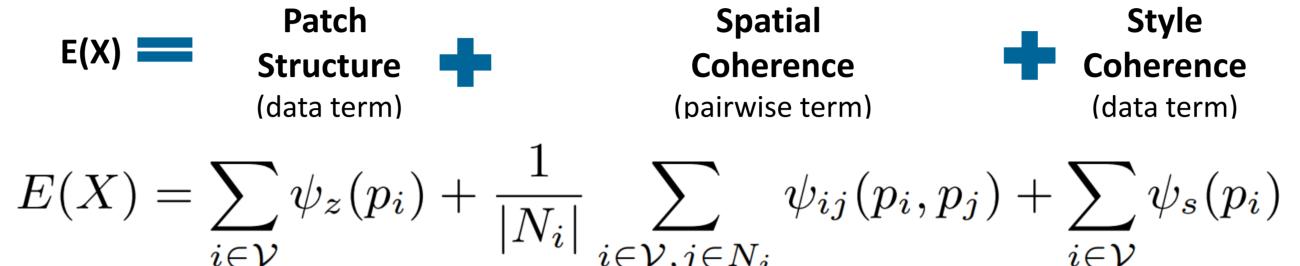


Returns the top 200 images from 68M images on Behance; constrained by both structure (content) and style constraints,

¹ Centre for Vision Speech and Signal Processing (CVSSP), University of Surrey, UK. ²Adobe Research, Creative Intelligence Lab (CIL).

Style-aware optimization for patch selection

Given the style and structure relevant patches, we propose a global optimization for filling the hole with patches maximizing visual plausibility and style coherence



Patch Structure: measures the deviation of the structure of patch p_i from the structured content in the source image, s

 $\psi_z(p_i) = ||g_z(p_i) - g_z(s)||_2$

Spatial Coherence: The pairwise term $\psi_{ij}(p_i p_j)$ measures spatial coherence of the patch neighbourhood, through the sum of square difference (SSD) of pixel values in the overlap area between neighbouring patches *i*, *j*

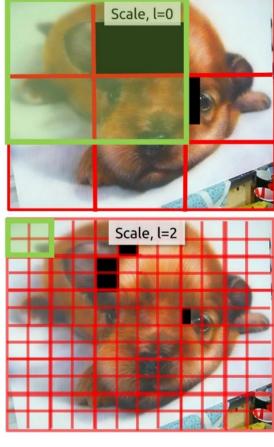
Style Coherence: Encourages style coherence in local regions of the image. This is expressed as the L2 distance within the style embedding

$$\psi_s(p_i) = |g_s^l(p_i) - g_s^l(s)| + \frac{1}{|N_i|}$$

Coarse to fine

The MRF is solved iteratively at multiple scales.

Grid of overlapping patches





Adaptively stylizes the set of selected patches X to harmonize patch content prior to compositing into s



Ablation study

Cumulatively enables each of our individual contributions on top of a classic baseline for inpainting

Input

baseline ssd

+patch structure

+style coherence

 $\sum |g_s^l(p_i) - g_s^l(p_j)|$ $p_j \in \mathcal{N}_i$

Adaptive Stylization

+pre style of patch

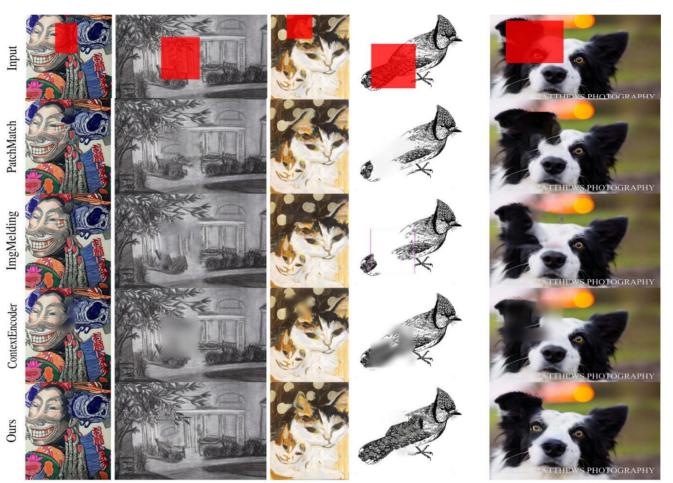
+adaptive style of patch

Evaluation

We evaluated the approach using two large image datasets: **1) Places2** a dataset of photos commonly used for image completion; 2) Behance Artistic Media (BAM!) a new in-painting dataset sampled from a website of publicly shared artwork from creative professionals

We compare against several contemporary baselines: PatchMatch [1], Image Melding [3], Efros et al./Million Image AIC [8] and Context Encoder [20].

Behance (BAM!)



	Style														M	ean		
Method	3D		Comic		Graphite		Oil .		Photo		Pen Ink		Vector		WaterColor			
	SSIM	SWD	SSIM	SWD	SSIM	SWD	SSIM	SWD	SSIM	SWD	SSIM	SWD	SSIM	SWD	SSIM	SWD	SSIM	SWD
Million Image [8]	0.85	2.34	0.87	2.41	0.89	2.30	0.84	2.37	0.86	2.41	0.84	2.30	0.9	2.31	0.84	2.35	0.86	2.35
PatchMatch [1]	0.86	2.33	0.91	2.20	0.91	2.19	0.91	2.14	0.91	2.30	0.88	2.23	0.94	2.16	0.91	2.26	0.91	2.23
PatchMatch[1]+NoStyle	0.87	2.32	0.91	2.20	0.91	2.19	0.91	2.14	0.91	2.30	0.88	2.23	0.94	2.16	0.91	2.26	0.91	2.22
PatchMatch[1]+PREŠTY	0.88	2.31	0.91	2.21	0.91	2.19	0.91	2.13	0.91	2.30	0.90	2.21	0.94	2.16	0.91	2.26	0.91	2.22
ImgMelding [3]	0.81	2.48	0.88	2.41	0.86	2.28	0.87	2.29	0.84	2.39	0.85	2.30	0.89	2.32	0.83	2.37	0.85	2.36
ImgMelding[3]+NoStyle	0.81	2.48	0.88	2.41	0.86	2.28	0.87	2.28	0.84	2.39	0.85	2.31	0.89	2.32	0.83	2.37	0.85	2.36
Context Encoder [20]	0.86	2.27	0.82	2.26	0.91	2.29	0.83	2.24	0.91	2.30	0.81	2.31	0.9	2.31	0.84	2.36	0.86	2.29
Baseline (NoStyle)	0.85	2.39	0.88	2.27	0.89	2.40	0.84	2.41	0.85	2.35	0.85	2.28	0.93	2.28	0.89	2.38	0.87	2.35
+SU	0.86	2.35	0.89	2.23	0.89	2.35	0.84	2.41	0.86	2.34	0.85	2.28	0.94	2.18	0.89	2.38	0.88	2.32
+SU+ST	0.87	2.34	0.89	2.23	0.91	2.27	0.85	2.39	0.86	2.34	0.85	2.28	0.94	2.18	0.89	2.37	0.88	2.30
+SU+ST+PRESTY	0.91	2.33	0.92	2.21	0.90	2.19	0.89	2.19	0.90	2.30	0.88	2.27	0.94	2.17	0.93	2.26	0.91	2.24
+SU+ST+ADSTY (Ours)	0.94	2.17	0.91	2.21	0.92	2.17	0.91	2.15	0.91	2.30	0.93	2.14	0.94	2.17	0.94	2.25	0.93	2.19
Table 1. Structural in	nage s	imilari	tv (SS	IM) v	s. the g	round	truth	for BA	M. SS	SIM. h	igher i	s bette	er. SW	D(x1)	$(0^2) \log(10^2)$	wer is	better	

Additional Inpainting Results

Illustrating patch selection and stylization

Places2 Benchmark

