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Abstract

Content-aware image completion or in-painting is a fun-
damental tool for the correction of defects or removal of
objects in images. We propose a non-parametric in-painting
algorithm that enforces both structural and aesthetic (style)
consistency within the resulting image. Our contributions
are two-fold: 1) we explicitly disentangle image structure
and style during patch search and selection to ensure a vi-
sually consistent look and feel within the target image. 2)
we perform adaptive stylization of patches to conform the
aesthetics of selected patches to the target image, so harmo-
nizing the integration of selected patches into the final com-
position. We show that explicit consideration of visual style
during in-painting delivers excellent qualitative and quan-
titative results across the varied image styles and content,
over the Places2 scene photographic dataset and a challeng-
ing new in-painting dataset of artwork derived from BAM!

1. Introduction
Image completion to repair defects or remove unwanted

objects requires missing image data (’holes’) to be filled
in a visually plausible way. Most existing algorithms oper-
ate by copying and seamlessly blending patches from else-
where in the image, hallucinating visually plausible texture
to fill the hole [5, 4, 1]. This idea has been extended to sam-
ple patches from auxiliary image collections (AICs) [8] or
domain-specific generative models [31, 10]. One advantage
of using an AIC is greater flexibility and likelihood of find-
ing a suitable match among the millions of images within
the collection. Most methods focus on photographic images
and accordingly are driven by structure or semantic similar-
ity. However, this is not suitable for artistic images as these
methods do not attempt to match on visual style.

In this paper we propose a novel AIC based image com-
pletion approach that explicitly considers both structure and
visual style to deliver aesthetically superior in-painting re-
sults with a consistent visual look and feel, over a broad
gamut of digital artwork. Specifically, we propose two tech-
nical contributions:

1) Style-aware Optimization. First, we explicitly fac-
torize image appearance into structure and style through a

Figure 1. We propose enhancing image completion through explicit
consideration of visual aesthetics (style) alongside structure and
semantics. A deep convnet is used to disentangle patch structure
and style, driving 1) style-aware patch search; 2) a style-aware
optimization for patch selection; 3) stylization of patch content to
enable seamless image completion with coherent visual aesthetic.

deeply learned representation. This enables us to enforce
style coherence within the patch search and selection opti-
mization. Existing approaches focus upon only the structural
plausibility of the completed image, considering this at both
a low and high level. At a low level, patches are selected
to minimize discontinuities in local edge and texture infor-
mation in the image. At a high level, images are selected to
ensure semantically similar patches (e.g., to in-fill a water-
fall patches are sampled from images containing waterfalls).
However, neither of these structural constraints enforce a
consistent visual aesthetic between the patches selected and
the image to be in-painted. For example, a visually plausi-
ble fill of a region of a watercolor painting would require
the sampling of patches from a watercolor image. When
drawing patches from AICs containing many millions of im-
ages [8], it is frequently possible to obtain patch candidates
that match the object type and structure but have a very dif-
ferent aesthetic. Such visual inconsistencies are readily per-
ceived by a human who expects a homogeneous aesthetic
style within the completed image.

2) Adaptive Stylization. Second, our optimization adap-
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Figure 2. Overview of the proposed method. (a) Learning a local patch model to disentangle aesthetics and structure. (b) our proposed
3-stage algorithm for style aware image in-painting: 1) source image used as a query for a style-aware web-scale search for in-filling
candidates; 2) patch aggregation and selection via MRF balancing structure and style; 3) adaptive stylization of patches using MRF weights.

tively stylizes patch content to conform their visual style to
that of the destination image. Existing patch composition
methods focus upon the removal of structural inconsisten-
cies, e.g., using Poisson blending [21] or convolutional pyra-
mids [6] to minimize discontinuities in the edges and tex-
ture. Although some approaches have explored basic color
transfer [28] for patches, and generative texture (GAN) has
been explored for narrow domains, no attempts have been
made to harmonize the style of patches during their com-
position to create a homogeneous aesthetic in the filled re-
gion. This is important as patches may not exist within even
large AICs that precisely match aesthetics of the image (or
part thereof) being filled, especially when in-painting dig-
ital artwork. Thus stylization broadens the gamut of suit-
able content for in-painting; bridging the gap between non-
parametric and generative approaches to image completion.

To incorporate an awareness of style (aesthetics) into
both stages - patch selection and composition – our approach
makes use of a feature embedding that can both quantify dif-
ferences in style between patches (thereby influencing patch
selection optimization) as well as drive stylization of cho-
sen patches to finesse their appearance within the global
composition. The abilities to disentangle structure and style
similarity in both the search and selection of image patches,
and to drive decision making around the formation of those
patches (including their stylization) are the core novelties of
this work. This enhances visual quality for automated image
completion versus state of the art techniques, and diversi-
fies image completion to the domain of digital artwork. We
demonstrate the capability of our network in filling holes
in stylized images using a novel dataset of artwork (BAM!
[30]). We further show that our method excels in the photo
in-painting task producing state-of-the-art results using the
Places2 dataset [32]).

2. Related Work

Texture synthesis for image in-painting has been exten-
sively studied. The earliest methods focused upon greedy
per-pixel and patch-based iterative algorithms [21, 6, 29, 5]
that sought to fill holes from their edges inward incremen-
tally, sampling patches from elsewhere within the same im-
age. The exploration of efficient representations for match-

ing patches [14] and for efficient patch matching, e.g., using
random propagation of a few good matches [1].

A common framework for texture synthesis is the Markov
Random Field (MRF) in which the data term expresses
the plausibility (via local image, e.g., the edge of texture
properties) and the pair-wise term the spatial coherence.
There have been several works exploring MRF formula-
tions of this kind [16, 9, 19], including methods that source
patches across multiple images (AICs) [8] and more re-
cent methods that integrate deeply learned features (e.g.
AlexNet/fc7) to constrain patch selection providing seman-
tically coherent texture choice [24]. Although we also in-
corporate deeply learned features with an MRF formulation,
our work uniquely considers visual style as a patch selection
constraint to harmonize visual appearance.

Generative approaches learn the appearance of objects or
scenes from large databases of images and leverage this to
hallucinate missing regions. Pathak [20] presented a context
encoder that understands semantics structure to complete
the image holes. Yeh et al. [31] consider image completion
as a constrained image generation problem, using a Gener-
ative Adversarial Network (GAN) model. Iizuka et al. [10]
maintain both local and global consistency through a convo-
lutional completion network and two context discriminator
networks.

Our work straddles both the non-parametric sampling and
generative paradigms. On the one hand, we adopt an AIC
patch sampling approach driven by a deep model of struc-
ture and style, but on the other, we use the same embedding
to modulate patch content beyond that available within the
AIC using Neural Style Transfer (NST). Gatys [7] proposed
the first NST work on the reconstruction of stylized images
using a (generically trained) convnet using a loss function
that offered independent control over semantic structure and
visual style. Johnson et al. [12] proposed to pre-train a feed
forward convnet over a broad set of images for each style to
mitigate the computational burden of the NST. Structure and
composition are typically preserved poorly within NST; an
issue addressed by Li and Wand [17] who replaced the con-
ventional Grammian approach to NST with a combination
of a feed-forward CNN and a generative MRF (CNNMRF).
Liao [18] and Upchurch [26] combined the concept of image
analogy and deep features generated from a CNN to achieve



Figure 3. Dense visualizations (PCA) of patch style embedding for
images of constant semantics but varying style (top) and varying
spatial scales 40-140px (bottom). Inset: t-SNE embedding at 80px.

style transfer. In this work, we combine stylization and im-
age completion using a single style embedding to exploit the
style and structure of content,

3. Style-aware Image Completion
We propose a style-aware image completion algorithm

comprising three stages (Fig. 2). Initially, a style- and
structure-aware image search is performed to identify rel-
evant images from a web-scale (∼ 66.8M image) AIC from
which raw patch data may be sampled (sec. 3.2.1). We then
perform patch selection, the process of selecting from an
over-complete set of patches available from this large set of
auxiliary images (and the source image). Selection balances
visual consistency, and semantic plausibility, expressed via
a global objective function minimized through an MRF op-
timization performed at multiple scales (sec. 3.3). Patches
are stylized during composition using the style distance term
determined via the MRF patch selection, to minimize the dif-
ference between the style of the patch and source image, and
so to remove artifacts and visual discontinuities (sec. 3.4).
All stages of the pipeline are driven using a deeply learned
feature embedding that disentangles structure and style.

3.1. Disentangling Patch Structure and Aesthetics
Explicit disentangling of structure and style improves

the targeting of the image search to return content that
more closely matches the aesthetics of the source image.
It also enables reasoning about the style similarity of se-
lected image patches, therefore determining the parameters
of subsequent patch stylization. We learn a pair of functions
{gs(p), gz(p)}, where p denotes an image patch, for feature
embedding using two triplet convolutional neural networks
(convnets): The first (gs) learns aesthetic style similarity in-
variant to the semantics of image content, whilst the other
(gz) learns structural similarity invariant to style. Both net-
works are of homogeneous design, comprising a GoogLeNet
(Inception-v3 [25]) backbone across all branches with a low-
dimensional (128-D) bottleneck appended after the pool5
layer with all weights shared (Siamese). The feature embed-
ding is available from this bottleneck layer. The network
architecture is illustrated for the style embedding in Fig. 2a.

3.1.1 Style Embedding

Our coarse-to-fine in-painting process selects and stylizes
patches at multiple resolutions (sec. 3.3-3.4) and therefore
requires embeddings amenable to feature extraction at var-
ious scales. We therefore learn a set of style embeddings
S = {gls} for l = [0, L] denoting half-octave intervals of
square patch size from 40 to 160 pixels (px), with i = 0 in-
dicating the full image (resized to 224px). Initially, we train
each style embedding from scratch via discriminative (soft-
max) loss as a style classifier given a set of artistic images
and photographs manually annotated into style categories,
we use 88K images selected randomly from the BAM! (Be-
hance Media) dataset [30], evenly partitioned into a set of
8 style categories comprising: watercolor; vectorart; 3D;
graphite; pen; oil; comic; photo (see Fig. 3). The style net-
work is then fine-tuned via hard negative mining using a
triplet loss (eq. 1) by presenting image triplets in which the
anchor a and positive branches p containing objects of the
same style (e.g. watercolor) but differing content (e.g., a bike
and a dog). The negative branch n comprises an image of
differing style but an object similar to the anchor branch.
The network minimizes the loss L :

L(a, p, n) = [m+|gls(a)−gls(p)|2−|gls(a)−gjs(n)|2]+ (1)

Where m = 0.2, a fixed constant related to the convergence
and [x]+ indicates positive values of x. A further 10K vali-
dation images were sampled from BAM! to evaluate the effi-
cacy of the embedding via classification (mean average pre-
cision; mAP) score over scale. As expected, mAP falls with
scale achieving 72.0, 65.6, 58.9 and 49.0 at 160px, 120px,
80px and 40px respectively. Despite this, performance is suf-
ficient to extract style information at fine-resolution patch
scales providing better definition (Fig. 3, lower) in turn im-
proving patch selection during optimization.

3.1.2 Structure Embedding

We also learn the style-invariant structure embedding gz(.)
via Inception-v3 branches pre-trained on ImageNet as a dis-
criminative softmax problem followed by triplet refinement
on artwork similar to gs(.). Precisely, in the case of gz(.)
the roles of the positive and negative branches are reversed
(i.e. anchor and positive branches receive similar semantics,
but differing style, while the negative branch receives im-
ages matching the style but not the semantics of the an-
chor). Since BAM! in its current incarnation contains only
nine semantic category annotations, to promote semantic
generalization over artwork the network is subjected to a
further fine-tuning stage over a broader dataset of 1M art-
works from the website Behance (from which BAM! is
derived). Fine-tuning is performed via an additional triplet
refinement stage using string matches on keyword tags as-
sociated with artworks on the website to inform semantic
relevance. Although in principal gz(.) could be trained over
multiple scales, as per gis we have found little performance
benefit in doing so, perhaps due to the local nature of image



Figure 4. Top: Examples of a query (left) and retrieved images
(right). Middle: Patches extracted densely. Bottom: Patch styliza-
tion performed to optimize aesthetic coherence when used to fill
the hole. Sec. 4 discusses pre-stylization of patches vs. (optimally)
adaptive stylization of patches via MRF optimization outcome.

structure, and thus a single embedding is learned for use in
subsequent patch search and selection.

3.2. Patch Aggregation and Selection

Given a source image s containing a user-specified re-
gion ω to be in-painted, a set of candidate patches P need to
be identified. Exhaustively exploring all patches within an
AIC would prove intractable given the scale and diversity of
collections available. In the spirit of [8], we automatically
search via visual search a large dataset of images D to cre-
ate a short-list of images from which to sample candidate
patches.

3.2.1 Style and Structure aware Retrieval

To perform the search we index approximately 66.8M user-
generated photos and artworks on Behance; a website for
creative professionals. Each image d ∈ D is forward passed
through gz and g0s yielding a descriptor:

I(d) = PQ
([

gz(d) g0s(d)
]
, B
)

(2)

where PQ(.) indicates a product quantization (PQ) [11] of
the 256-D search vector to a compact binary form (64 bits)
using basis B learned over 0.5M images from D. The ap-
proach builds upon [2] in which style-aware search is per-
formed using a convnet-learned projection of a similarly con-
catenated feature for sketch based retrieval. Here we employ
PQ to scale over tens of millions of artworks, and return the
top 200 based on a k−NN search on ||I(s)−I(d)||2 ∀d ∈
D. The ability to search for images from which to pull tex-
ture, employing both structure (content) and style (aesthetic)
constraints, is a unique and desirable property of our in-
painting approach. Patches are sampled at multiple scales:
160× 160px, 120× 120px, 80× 80px, and 40× 40px (map-
ping to each iteration our multi-scale in-painting, sec. 3.3).
The largest patches encode global structure, whilst smaller
patches provide fine grain detail. We denote the unordered
set of patches densely sampled from retrieved images as P .

3.3. Patch Selection over Learned Embeddings
Given the style and structure relevant patches, we propose

a global optimization for filling the hole ω within s with
patches maximizing visual plausibility and style coherence.
We establish a regular, overlapping grid over ω each grid cell
overlapping half of its neighbor. We consider hole filling as
a labeling problem; a Markov Random Field (MRF) opti-
mization is applied to select an optimal subset of the patches
from candidate patch set P to label the grid. The optimiza-
tion minimizes an energy function that balances the choice
of patches to minimize deviation from three measures: con-
tent structure, style, and appearance (spatial coherence):

E(X) =
∑
i∈V

ψz(pi) +
1

|Ni|
∑

i∈V,j∈Ni

ψij(pi, pj) +
∑
i∈V

ψs(pi)

(3)
Where V = {v1, ..., vn} corresponds to the set of all grid

cells, and pi ∈ P denotes the patch label associated with
the ith cell vi, thus the energy term E(X) evaluates putative
mappings X = {vi 7→ pi} ∀vi ∈ V . Ni denotes the set
of neighboring (4-connected) cells to vi. The unary or data
function ψi(pi) measures the deviation of the structure of
patch pi from the structured content in the source image (s)
and is expressed via L2 distance in the structure embedding
(sec. 3.1.2) between the patch and image:

ψz(pi) = ||gz(pi)− gz(s)||2 (4)

The pairwise term ψij(pi, pj) measures spatial coherence
of the patch neighborhood, through the sum of square differ-
ence (SSD) of pixel values in the overlap area between neigh-
boring patches i, j (echoing the standard per pixel RGB dif-
ference used in the original GrabCut work [23] and deriva-
tives). The tertiary term ψs(pi) encourages style coherence
with local regions of the image. This is expressed as the L2

distance within the style embedding (sec. 3.1.1):

ψs(pi) = |gls(pi)− gls(s)|+
1

|Ni|
∑
pj∈Ni

|gls(pi)− gls(pj)|

(5)
Thereby minimization of E(X) encourages a spatially co-
herent in-painting both with respect to edge information
(pairwise term) and local style coherence (tertiary term),
while ensuring similar local semantic distribution (unary
term). The impact of the structure (e.g. vs. SSD) and style
terms in particular is studied in sec. 4. The proposed energy
function takes a similar form to the Robust Pn model of [15]
and a similar trick can be used to modify the energy term
to take the form of a weighted average unary potential of
patches. This definition is convenient as this spatially higher
order term does not take multiple numbers of variables in
the clique, and so can effectively be further merged to the
unary term simplifying the energy function to a form solv-
able using standard alpha-beta expansion:

E(X) =
∑
i,j∈V

(ψz(pi) + ψs(pi, pj)) +
∑

i∈V,j∈Ni

ψij(pi, pj)

(6)
The MRF is solved iteratively at multiple scale levels l =

[0, L] using the corresponding set of style embeddings gls(.)



Figure 5. Patch Stylization. Left: Comparing patches without styl-
ization (top), with pre-stylization (middle), and with adaptive styl-
ization (bottom) for the in-painted dog in Fig 8. Right: Effect of
increasing stylization weight on an adaptively stylized patch.

learned in Sec. 3.1.1. At each scale, s is updated and used
as the input to eqs.4-5 such that finer scale iterations build
upon the structure laid down by earlier, coarser iterations. At
the initial (coarsest) iteration, l = 0 features derived from s
in eqs.4-5 include the hole, encoded as zero (black) pixels.

3.4. Adaptive Patch Stylization
Our algorithm adaptively stylizes the set of selected

patches X to harmonize patch content prior to compositing
into s. Adapting neural style transfer (NST) [7] we extract
a structure descriptor from the patch χz(pi) and a style de-
scriptor from the source image χs(s). We seek a modified
patch p′i such that χs(p′) ∼= χs(s) and χz(p′) ∼= χz(pi).
The degree to which style consistency between p′i and s is
enforced is driven by the tertiary term of the MRF:

Lsty(p′i) = |χz(p′i)−χz(pi)| −αe−ψs(pi)|χs(p′i)−χs(s)|
(7)

where α = 10−5, a scale normalization balancing structure
and style terms. The solution for p′i is initialized to pi plus
Gaussian noise, and loss term Lsty and minimized through
back-propagation (ADAM) through a convnet. Following
[7] χz(.) is obtained through forward-pass of a pre-trained
(on ImageNet) VGG-19 sampling the conv 4 layer and χs(.)
through coarse style embedding g0s(.). Thus the ’strength’ of
the stylization is governed by style similarity determined
during MRF optimization. The stylized patches are com-
posited into s via the gradient domain blending algorithm of
Perez and Blake [21]. Fig 4 illustrates patches from retrieved
images conformed to the style of s. In sec. 4.2 we contrast
adaptive- vs. pre- stylization of retrieved images showing
the latter to perform better. Adaptive stylization of patches
is important for artwork where there is broad style diversity,
and in-painted aesthetics must match.

4. Experiments and Discussion
We evaluate proposed algorithm over two datasets: 1)

Places2 [32]; a dataset of photos commonly used for in-
painting; 2) a new in-painting dataset sampled from a dataset
of digital artwork ’Behance Artistic Media’ (BAM!) [30].

Results are quantified via both a subjective user study and
two objective metrics: structural similarity (SSIM) [27] and
sliced Wasserstein distance (SWD) [13]. The latter is com-
puted on patches sampled from the images; a Laplacian
pyramid from a resolution of 16 × 16px is progressively
doubled to 512× 512px. 128 random descriptors formed of
a 7×7px neighborhood are sampled from each level, and sta-
tistical similarity computed via sliced Wasserstein distance
(SWD) — an approximation to Earthmover’s distance [22].
Low SWD indicates the distribution of sampled patches be-
tween the in-painted image and ground truth are similar.

4.1. Comparative Evaluation
We compare against several contemporary baselines:

PatchMatch [1] and Image Melding [3] which sample
patches from within a single source image; an AIC approach
’Scene completion with millions of images’ [8] (sec. 3.2.1);
and a generative convnet approach ’Context encoder’ [20].
Comparisons are made using published code.

A subset of 1000 digital artworks were sampled from
BAM! across 8 artistic styles (sec. 3.1.1). Each image was
re-sized to have longest side of 600px and a random mask
defining the ’hole’ for in-painting of side 150-250 pixels
positioned at random. Representative results are shown in
Fig 6, and Fig 7 compares the proposed method to each
baseline, and results are quantified in Tbl. 1 (upper). Existing
baselines suffer from blurring and failure to in-paint details
such as the dog eye or cat ear. Our method reduces false
positives that may match structure but not visual style of
the source. Adaptive stylization harmonizes each patch’s
appearance, further reducing artifacts.

We compare against the same baselines using scenic
photographs in Places2, plus a recent GAN in-painting
work [10] (ImgComp.) for which no code or quantified re-
sults are released. Fig 9 presents a visual comparison, and
quantitative results are given in Tbl.1 over the image set
included in [10] with the same mask regions published in
that work. On this photo dataset we exceed the state of the
art, including a GAN [10] requiring months of GPU training
(but realtime inferernce). The other methods struggle with
the difficulty of these images creating blurred regions (Img-
Melding, Context Encoder) that detract from the visual qual-
ity and coherence of the image. Whilst PatchMatch produces
reasonable visual results, they are structurally incorrect in
these examples.

Run-time varied across baselines for a 600px image: a
few seconds (PatchMatch, ContextEncoder) to a few min-
utes (Millions of Images) to 1.5 hours (Image Melding). So-
lution of our MRF takes less than 30 seconds, with adaptive
NST taking a few minutes and representing the bottleneck.

4.2. Ablation Study
Our ablation study cumulatively enables each of our in-

dividual contributions on top of a classic baseline for in-
painting. BAM results are presented in Tbl. 1 (lower) and
visualized in Fig. 8, and the results are presented in Tbl 3
for the Places2 examples from [10]. We first consider our



Figure 6. Representative results of the proposed style- and structure- aware image completion algorithm over photos and digital artwork
(Places2, BAM). Source (left) and result (right); in-painted region (’hole’) highlighted in source.

Method
Style Mean3D Comic Graphite Oil Photo Pen Ink Vector WaterColor

SSIM SWD SSIM SWD SSIM SWD SSIM SWD SSIM SWD SSIM SWD SSIM SWD SSIM SWD SSIM SWD
Million Image [8] 0.85 2.34 0.87 2.41 0.89 2.30 0.84 2.37 0.86 2.41 0.84 2.30 0.9 2.31 0.84 2.35 0.86 2.35
PatchMatch [1] 0.86 2.33 0.91 2.20 0.91 2.19 0.91 2.14 0.91 2.30 0.88 2.23 0.94 2.16 0.91 2.26 0.91 2.23
PatchMatch[1]+NoStyle 0.87 2.32 0.91 2.20 0.91 2.19 0.91 2.14 0.91 2.30 0.88 2.23 0.94 2.16 0.91 2.26 0.91 2.22
PatchMatch[1]+PRESTY 0.88 2.31 0.91 2.21 0.91 2.19 0.91 2.13 0.91 2.30 0.90 2.21 0.94 2.16 0.91 2.26 0.91 2.22
ImgMelding [3] 0.81 2.48 0.88 2.41 0.86 2.28 0.87 2.29 0.84 2.39 0.85 2.30 0.89 2.32 0.83 2.37 0.85 2.36
ImgMelding[3]+NoStyle 0.81 2.48 0.88 2.41 0.86 2.28 0.87 2.28 0.84 2.39 0.85 2.31 0.89 2.32 0.83 2.37 0.85 2.36
Context Encoder [20] 0.86 2.27 0.82 2.26 0.91 2.29 0.83 2.24 0.91 2.30 0.81 2.31 0.9 2.31 0.84 2.36 0.86 2.29
Baseline (NoStyle) 0.85 2.39 0.88 2.27 0.89 2.40 0.84 2.41 0.85 2.35 0.85 2.28 0.93 2.28 0.89 2.38 0.87 2.35
+SU 0.86 2.35 0.89 2.23 0.89 2.35 0.84 2.41 0.86 2.34 0.85 2.28 0.94 2.18 0.89 2.38 0.88 2.32
+SU+ST 0.87 2.34 0.89 2.23 0.91 2.27 0.85 2.39 0.86 2.34 0.85 2.28 0.94 2.18 0.89 2.37 0.88 2.30
+SU+ST+PRESTY 0.91 2.33 0.92 2.21 0.90 2.19 0.89 2.19 0.90 2.30 0.88 2.27 0.94 2.17 0.93 2.26 0.91 2.24
+SU+ST+ADSTY (Ours) 0.94 2.17 0.91 2.21 0.92 2.17 0.91 2.15 0.91 2.30 0.93 2.14 0.94 2.17 0.94 2.25 0.93 2.19

Table 1. Structural image similarity (SSIM) vs. the ground truth for BAM. SSIM, higher is better, SWD (×102) lower is better

MRF patch selection without style – eq. 3 with unary and
pairwise terms only – using SSD for ψz(.) rather than gz(.)
as structure embedding; result no patch style (baseline). The
result structure unary (+SU) uses ψz(.) whilst style term
(+ST) enables the tertiary term ψs(.) for style. We also ex-
plore pre-stylization of P using NST [7] prior to solving
the MRF pre styled images (+SU+ST+PRESTY). We con-
trast this with our full proposed approach which adaptively
stylizes (+SU+ST+ADSTY) patches based on ψs(.).

Our method outperforms all baselines for the Places2
dataset, and for the majority of BAM data with PatchMatch
and Context encoder performing similar to the proposed
method for photo content in BAM. Patches used in the
+SU+ST variant have similar appearance but may mismatch
structure or visual style of s, while the +SU+ST+PRESTY
patches some are similar in aesthetic but not self-consistent
within the image. The difference between the two is further
illustrated in the in-painted dog image (Fig. 8) and visualized
in Fig 5. Further inefficiency exists with +SU+ST+PRESTY
is that the stylization occurs before the MRF optimization
has occurred, meaning all possible patches have to be styl-
ized. Stylization during compositing allows a margin for
error since patches that deviate slightly from the aesthetics
of their neighbors can be finessed into a homogeneous style.

4.3. Perceptual User Study

We conducted a study via Amazon Mechanical Turk
(AMT) to compare performance of our method versus the
3 most promising baselines, and 2 most promising abla-
tions. 300 images sampled from BAM were manipulated
(as sec. 4.1) to remove a random region of interest. We con-
catenated results from the 6 methods in random order and
presented them to 30 participants, gathering in total 9k an-
notations from 243 unique users. Participants were asked
to ‘identify the highest quality image’ without sight of the
ground truth. A consensus threshold of 1

3 of the total votes
for each image was used to disregard results that failed to
reach consensus. Tbl. 2 reports the preferences expressed.
Our approach significantly outperforms the ablated variants
and existing baselines with results echoing Tbl.1 trends.

Method Style
3D Comic Grphte Oil Photo Pen Ink Vect WtrClr Tot

IM[3] 0.00 0.89 1.04 0.00 0.00 0.76 0.00 0.89 3.67
PM [1] 1.03 1.39 1.03 0.00 4.87 0.00 1.67 2.35 12.45
CE [20] 0.00 1.43 2.23 0.00 4.03 0.00 0.00 0.00 7.66
+SU 0.00 1.02 0.78 2.32 0.00 1.89 0.00 0.00 6.01
+PRESTY 4.43 0.79 0.00 1.89 0.00 0.00 0.00 6.34 12.04
Ours 10.4 5.43 7.27 6.37 3.85 7.10 8.34 10.92 59.34
Table 2. Perceptual user study on BAM: preference across 6 meth-
ods (as %, 3.s.f.). Users asked for the ”highest quality” image.



Figure 7. Comparison with existing works, AIC million image [8], PatchMatch [1], Img Melding [3], and Context Encoder [20]. Existing
works produce reasonable results but with excessive blurring or missing key details absent in the image due to inability to identify patches
that are coherent in structure and style. Our approach identifies patches from similar structure and style images to hallucinate detail that is
not present in the image, and also then restyle the patches further to ensure a visually coherent result. More results in suppl. material

4.3.1 Failure cases

Fig 10 highlights some failure cases encountered by the
proposed method. Adopting NST [7] for stylization limits
performance on styles that are not well transferred by that
method. In Fig. 10(a) the face isn’t fully completed, and in
general fine media types such as pen-ink artworks are harder
for NST, and so our pipeline, to handle. Similarly the short-
listing of retrieved images via visual search presents a limita-
tion when quality of retrieval is lower as we retrieve without
stylisation. Fig 10(b) shows a car failing to in-paint as the

search focused on 3D buildings rather than cars. Fig 10(c)
fails due to the sofa style and structure being retrieved but
with insufficient detail to complete the stylized people in the
scene.

5. Conclusion
We have presented a novel algorithm for style-aware im-

age completion. The core novelties of our method are a deep
embedding for visual structure and style that enables: 1) the
consideration of visual style in the search and selection of



Input Baseline (no style) +SU +SU+ST +SU+ST+PRESTY +SU+ST+ADSTY (Ours)
Figure 8. Ablation study cumulatively enabling individual style aware components of the approach to demonstrate their impact.

Input Million Image [8] PatchMatch [1] ImgMelding [3] Context Encoder [20] ImgComp [10] Ours
Figure 9. Qualitative comparison of five baselines vs. the proposed approach on the Places2 dataset.

Approach
IM[3] PM [1] CE [20] GL [10] +SU +ST +PRESTY +ADSTY

SSIM 0.76 0.88 0.74 0.89 0.79 0.81 0.85 0.90
SWD 2.62 2.60 2.50 2.47 2.60 2.51 2.55 2.47

Table 3. Method and baselines over Places2 results in [10]. SSIM,
higher is better, SWD (×102) lower is better. Ours is +ADSTY

patches; and 2) the neural stylization of patch content to pro-
mote consistency of visual style within the in-painted image.
As such our approach bridges the gap between patch-based
and generative approaches to image in-painting. Our algo-
rithm delivers results quantitatively and qualitatively supe-
rior to the state of the art on photos in Places2 [32], and non-
photo artwork in a subset of BAM! [30]. We have demon-
strated the independent value of our style-aware optimiza-
tion and stylization contributions through ablation studies.
Future work might include pursuing a fully generative ap-
proach to in-painting, e.g. similar to [10] but enabling style-
aware patch hallucination and so generality beyond photo-

Figure 10. Illustrative failure cases, due to limitations in content
availability or stylization (c.f. Sec. 4.3.1).

graphic data for GAN-based approaches.
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