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Abstract

A real-time full-body motion capture system is presented
which uses input from a sparse set of inertial measurement
units (IMUs) along with images from two or more stan-
dard video cameras and requires no optical markers or spe-
cialized infra-red cameras. A real-time optimization-based
framework is proposed which incorporates constraints from
the IMUs, cameras and a prior pose model. The combina-
tion of video and IMU data allows the full 6-DOF motion to
be recovered including axial rotation of limbs and drift-free
global position. The approach was tested using both indoor
and outdoor captured data. The results demonstrate the ef-
fectiveness of the approach for tracking a wide range of hu-
man motion in real time in unconstrained indoor/outdoor
scenes.

1. Introduction
Real-time capture of human motion is of considerable

interest in various domains including entertainment and the
life sciences. Recent advances in computer vision and the
availability of commodity wireless inertial sensors [13, 3]
are beginning to take motion capture from constrained stu-
dio settings to more natural, outdoor environments, and
with less encumbrance of the performer from specialized
costumes and optical marker setups traditionally required
(e.g. [4, 2]), while still retaining a high level of capture fi-
delity.

In this work, a novel optimization-based approach is pro-
posed which combines multi-modal input from inertial sen-
sors and cameras to produce an estimate of the full-body
pose in real time without requiring optical markers or a
complex hardware setup. The solver optimizes the kine-
matic pose of the subject based on a cost function compris-
ing orientation, acceleration, position and pose prior terms.
In our setup, the orientation and acceleration constraints are
provided by a sparse set of 6-13 Xsens inertial measurement
units (IMUs) attached to body segments, and positional con-
straints are obtained from 2D joint detections [7] from two

or more synchronised video camera views. In principle, the
solver is agnostic as to the source of the inputs.

Combining video and IMU data improves the tracking
performance compared to one or the other. The IMUs pro-
vide full rotational information for body segments, while
the video information provides drift-free global position in-
formation.

2. Related work
IMUs and multi-view video data were combined by

von Marcard et al. [17] to exploit the complementary prop-
erties of the data sources, i.e. drift free position from video
and 3D limb orientation from IMUs. However no compari-
son is performed against commercial reference-quality mo-
tion capture (instead the results are compared with respect
to consistency with silhouettes and IMU measurements),
and processing time is not specified.

The ‘Sparse Inertial Poser’ (SIP) system proposed by
von Marcard et al. [18] uses orientation and acceleration
from 6 IMUs as input and is assisted by a prior pose model
in the form of the SMPL body model [11]. However, SIP
processes sequences as a batch and is thus not suitable for
real-time, online operation. Furthermore, it is susceptible
to drift in global position since it does not use visual infor-
mation. Our system requires cameras in addition to sparse
IMUs, but processes sequences online in real-time and with-
out accumulating drift in global position.

Andrews et al. [6] perform real-time body tracking us-
ing a sparse set of labelled optical markers, IMUs, and a
motion prior in an inverse dynamics formulation. In con-
trast, our method is markerless and does not require setting
up a physics-rig of the subject.

Convolutional Pose Machines (CPMs) [19, 7] use deep
neural networks to estimate 2D pose (joint locations) for
multiple people from a single image, with video rate detec-
tion possible using GPU acceleration. In Tome et al. [14],
CPMs are extended to detect 3D pose from a single RGB
image by incorporating knowledge of plausible human
poses in the training. In VNect [12], 3D pose is estimated
in realtime from a single camera using CNNs and kinematic
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fitting, while Zhou et al. [22] use CNNs for 2D joint detec-
tion and offline Expectation-Maximization over an entire
sequence for 3D pose. Due to the monocular input, these
methods are subject to depth ambiguity.

Trumble et al. [15] use convolutional neural networks on
multiview video data to perform real-time motion capture.
However, this requires extensive training from multi-view
video data and the axial rotation of the limbs cannot be re-
covered since the input is based on visual hulls. Further-
more, controlled capture conditions are required for back-
ground segmentation. In contrast, our method requires min-
imal, simple training of the pose prior, while using a pre-
trained CPM detector for 2D detections. By incorporating
IMU data, our method is able to recover axial rotation of
the limbs while handling dynamic backgrounds and occlu-
sions. In subsequent work, Trumble et al. [16] combined
video and IMU input in a deep learning framework, includ-
ing using LSTM (long short term memory, [9]) for temporal
prediction to reduce noise, but still require at least four cam-
eras and relatively controlled capture conditions for visual
hull estimation.

Other recent approaches to realtime body tracking
use other types of capture hardware for example Kinect
(RGBD) cameras [20, 10] Kinect plus IMUs [8], or HTC
Vive infra-red VR controllers strapped to the limbs [1].

Our work performs real-time, online, full-body marker-
less tracking in unconstrained environments using multiple-
view video with as few as two cameras and 6 IMUs as input,
recovering the full DoFs including axial rotation and drift-
free global position.

3. Method

3.1. Notation and skeleton parametrization

The kinematic skeleton consists of a pre-defined hierar-
chy of nb rigid bones, b attached at joints. The root bone
b = 1 (i.e. the hips) has a global position, t1 and orientation,
R1. Each child bone, b ∈ [2, nb] is attached to its parent
with a fixed translational offset, tb, and pose-varying rota-
tion, Rb, w.r.t. the parent bone coordinates. In this work,
nb = 21 bones are used. The total degrees of freedom
(DoF) are d = 3+3×21 = 66, consisting of the root trans-
lation and 3 rotational degrees of freedom per joint. We
encode the pose of the skeleton as a single 66-dimensional
vector θ containing the 3D global translation of the root,
followed the stacked local joint rotations of each bone (in-
cluding the root), represented as 3D angle-axis vectors (i.e.
the axis of rotation multiplied by the angle of rotation in
radians). This parameter vector is the variable which is op-
timized, with the root translation t1 and joint rotations Rb

being extracted and used in calculations as applicable.
For each bone, b, the global rigid body transform Tg

b is
computed by concatenating bone offset and joint rotation

transforms along the kinematic chain as follows:

Tg
b(θ) =

∏
b′∈P(b)

[
Rb′ tb′

0 1

]
(1)

where P(b) is the ordered set of parent joints of bone b.
We define a set of ni IMU track targets, i, each attached

to a bone bi. The rotational and translational offsets of
the IMU w.r.t. the bone are denoted Rib and tib, respec-
tively. The rotational transform between each IMU refer-
ence frame and the global coordinates is denoted Rig . IMU
orientation measurements (w.r.t. the IMU inertial reference
frame) and acceleration measurements (w.r.t. the IMU de-
vice frame) are denoted Ri and ai, respectively. Likewise,
we define a set of np positional track targets, p, each at-
tached to a bone bp with translational offset tpb w.r.t. the
bone. Note that here we use the term ‘track target’ to refer
to a specific point on the body for which motion is esti-
mated, not a physical optical marker. In our approach 2D
joint positions are estimated using natural images and no
visual markers are required.

Finally, we define a set of nc cameras, c with calibrated
3× 4 projection matrices Pc and let tcp denote the 2D posi-
tion measurement for track target p in the local coordinates
of camera c.

3.2. Pose optimization

The following pose optimization energy is used:

E(θ) =

Data︷ ︸︸ ︷
ER(θ) + EP (θ) + EA(θ) +

Prior︷ ︸︸ ︷
EPP (θ) + EPD(θ)

(2)

where ER(θ), EP (θ) and EA(θ) contain orientation, posi-
tion and acceleration constraints, respectively and EPP (θ)
and EPD(θ) are pose projection and pose deviation priors,
respectively. The data and prior constraints are visualized
in Figure 1. Each term is described in the following subsec-
tions, where solved values have a ‘ˆ’ circumflex and their
dependence on θ is omitted for clarity. Unless otherwise
specified, values are for the current frame, t.

3.2.1 Orientation term

For each IMU, i, an orientation constraint is added which
seeks to minimize the relative orientation between the mea-
sured and solved global bone orientation (Figure 1).

The measured global bone orientation, Rg
bi

is obtained
from the IMU measurement Ri using the IMU-bone offset
Rib and IMU reference frame-global offset as follows:

Rg
bi

= Rig ·Ri · (Rib)
−1
. (3)
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Figure 1: Visualization of data and prior terms in the cost function (Equation 2).

The solved global bone orientation, R̂g
b is obtained using

the kinematic chain, ignoring translations:

R̂g
b =

∏
b′∈P(bi)

Rb′ . (4)

and the orientation cost is

ER(θ) =
∑

i∈[1,ni]

ρR

(
λR

∥∥∥ψ((R̂g
bi

)
−1

Rg
bi

)∥∥∥2
2

)
(5)

where ψ(·) extracts the vector part of the quaternion repre-
sentation of the rotation matrix, λR is orientation constraint
weighting factor, ρR(·) is a loss function. Discussion of the
weightings and loss functions are deferred to Section 3.2.5.

3.2.2 Position term

For each positional measurement from each camera, a con-
straint is added which seeks to minimize the Euclidean dis-
tance between the measured 2D location in camera coordi-
nates and the solved global track target location projected
into the camera (Figure 1).

The solved global track target location, t̂gp is determined
by applying the translational offset to the global bone trans-
form Tg

bp
calculated according to Equation 1:

t̂gp = τ t

(
τT (tpb) ·Tg

bp

)
(6)

where the operators τT (·) and τ t(·) are shorthand for cre-
ating a transform matrix from a translation vector and ex-
tracting the translation vector from a transform matrix, re-
spectively. This global target position is projected into each
camera to obtain 2D solved targets t̂cp in camera coordi-
nates:

t̂cp = dh(Pct̂
g
p) (7)

where the operator dh(·) performs de-homogenization of a
homogeneous vector.

The position cost is defined as

EP (θ) =
∑

c∈[1,nc]

∑
p∈[1,np]

ρP

(
λP c

c
p‖t̂cp − tcp‖

2
2

)
(8)

where ccp ∈ [0, 1] is a confidence weighting for con-
straint p obtained from the image-based position measure-
ment mechanism (Section 3.3), λP is a position constraint
weighting factor, ρP (·) is a loss function (see Section 3.2.5).
The confidence weighting cp and loss function enable ro-
bust output pose estimates in spite of persistently high levels
of noise and frequent outliers in input position detections.

In these experiments, the track targets are located on a
subset of the joints and thus have zero offset w.r.t. the bone
(tpb = 0). In general positional targets could be offset from
the joint locations (this would be the case if the positions
were to come from optical markers attached to the surface
of the body, rather than markerless joint detections).

3.2.3 Acceleration term

In addition to orientation, the IMUs provide acceleration
measurements (in the local IMU coordinates). In order to
include an acceleration term, it is necessary to consider a
window of three frames, t (current frame), and previous
two frames t − 1 and t − 2. For each IMU, a constraint
is added which seeks to minimize the difference between
the measured and solved acceleration of the track target site
(Figure 1). The solved acceleration âg

i is computed using
central finite differences using the solved pose from previ-
ous two frames along with the current frame being solved:

âg
i (t− 1) =

(
t̂gi (t)− 2t̂gi (t− 1) + t̂gi (t− 2)

)
/(∆t)2. (9)

where the solved IMU positions t̂gi are computed analo-
gously with Equation 6 (replacing subscripts p with i) and
∆t is the frame period (in our case, 16.7 ms).

The measured local accelerations from the previous
frame of IMU data1 are converted to global coordinates as
follows:

ag
i (t− 1) = Rig ·Ri(t− 1) · ai(t− 1)− ag (10)

where ag = [0, 9.8707, 0]T is the acceleration of gravity,
which needs to be subtracted. The acceleration cost is then

1The previous frame is used because central differences are used to
estimate the solved acceleration.



simply defined as

EA(θ) =
∑

i∈[1,ni]

ρA

(
λA

∥∥∥âg
i − ag

i

∥∥∥2
2

)
(11)

where once again λA is a constraint weighting factor, ρA(·)
is a loss function (see Section 3.2.5).

Note that the orientation constraints only require the ori-
entation offset of the IMU w.r.t. the bone to be known,
whereas the acceleration constraints require the transla-
tional offset to be known as well.

It is well known that double integrating acceleration to
obtain position is prone to drift, thus these acceleration
terms alone would not be sufficient to locate the body in
global coordinates over any length of time. The evaluation
section considers the merits of including the acceleration
term in the optimization.

3.2.4 Pose prior terms

In practice, not all the body segments are observed in the
input - the kinematic skeleton has more degrees of freedom
than are constrained by the IMUs and positional measure-
ments. For instance, the spine has several segments, but
only one or two IMUs attached to it. A pose prior is there-
fore required to constrain all degrees of freedom and pro-
duce plausible poses in spite of sparse or noisy sensor input.

In these experiments, two prior terms were incorporated
based on a principal component analysis (PCA) of a corpus
of motion capture data. The pose prior should be invariant
to the global position and heading of the subject. We there-
fore use θ̄, denoting the dp = d − 6 pose vector excluding
the first six elements, in the pose prior formulation.

A subset of ground-truth motion sequences from the To-
tal Capture dataset [16], covering a wide variety of poses
were used as training of the PCA pose model. In order
to obtain a representative sample of poses without over-
emphasis on commonly recurring poses for standing and
walking, for instance, we perform k-means clustering on
the full set of nf = 126, 000 training frames, with k =
nf/100 = 1, 260. The cluster centres are concatenated to
form a k × dp data matrix D and PCA is performed on
the mean-centered data. The dimensionality is reduced to
dr = 23 (chosen so as to keep 95% of the variance in the
data) and the resulting PCA model is a dp × dr coefficient
matrix, M, a dp-dimensional mean vector, µ and a dr-
dimensional vector of standard deviations, σ (the square-
roots of the principal component eigenvalues).

We use two priors based on the PCA of the pose: PCA
projection and PCA deviation. The projection prior encour-
ages the solved body pose to lie close to the reduced di-
mensionality subspace of prior poses (soft reduction in the
degrees of freedom of the joints), while the deviation prior

discourages deviation from the prior observed pose varia-
tion (soft joint rotation limits) [10]. The pose projection
cost is

EPP (θ) = ρPP

(
λPP

∥∥∥(θ̄−µ)−MMT (θ̄−µ)
∥∥∥2
2

)
(12)

and the pose deviation cost is

EPD(θ) = ρPD

(
λPD

∥∥∥diag(σ)−1MT (θ̄−µ)
∥∥∥2
2

)
(13)

where, as with the data terms, weighting factors λ and loss
functions ρ are used (see Section 3.2.5). A geometric inter-
pretation of these constraints is shown in Figure 1. Together
these terms produce soft constraints that yield plausible mo-
tion while not strictly enforcing a reduced dimensionality
on the solved pose, thus allowing novel motion to be more
faithfully reproduced at run time.

3.2.5 Energy minimization

As described in the previous subsections, weightings λ are
used to control the contributions of each term to the overall
cost in Equation 2. These are required because the different
terms compare different physical quantities, and because
some sources of data may be more reliable than others - for
instance IMU orientations may be more stable than noisy
position triangulations from images (refer to Section 4 for
the values used).

Furthermore, each term has a loss function, ρ(·) for each
residual. The purpose of the loss function is to make the
cost robust against outlier data (as well as to allow devia-
tion from the prior, when the measurements support it). For
the orientation constraints, a null loss is used (standard L2
distance), since the IMUs tend not to produce outlier mea-
surements. For the position, acceleration, PCA projection
prior and PCA deviation prior a robust Cauchy loss func-
tion is used, ρ(x) = log(1 + x). The Cauchy loss function
limits the effect of gross outliers by penalizing large resid-
ual values proportionally less than small values. Using the
robust loss functions was found to be necessary to get good
pose estimations in the presence of outlier measurements as
well as novel unseen poses.

The pose cost function E(θ) is optimized using the
Ceres non-linear least-squares solver [5]. The individual
residuals for the data and prior terms are written using tem-
plated types in order to use the autodifferentiation function-
ality of Ceres.

The position, orientation and acceleration constraints are
only affected by parameters associated with the bone to
which they are attached and its parent bones in the kine-
matic chain. Therefore, the Jacobian is sparse and its
computation can be sped up by using parameter blocks.



The computation is further sped up using multi-threaded
Jacobian computation. The solving is performed using
Levenberg-Marquardt with a sparse normal Cholesky linear
solver. For each frame, the pose vector is initialized with the
solved value from the previous frame, yielding full-body 6-
DoF pose estimation at real-time video rates.

3.3. Joint detection from multi-view video

The convolutional pose machines (CPMs) detector of
Cao et al. [7] is used to perform joint detections tcp from
each viewpoint in a multi-view video setup. The detector
also outputs confidences, ccp. These detections are used
for the positional constraints in the cost function (Sec-
tion 3.2.2). Although no explicit triangulation is performed
in our formulation, at least two views are required in order
for the solver to localize the subject in global coordinates
without depth ambiguity.

On our hardware, the CPM detector requires 125 ms per
frame on a single video stream, while fully utilizing the
GPU. Video-rate detection of all frames in multiple views
would thus not be practical. We employ two techniques to
improve throughput and achieve video rate solving: ROI
(region of interest) packing and temporal sub-sampling of
position measurements.

3.3.1 ROI packing

The CPM detector is able to detect multiple people within
a single image, while maintaining computation time [7].
We propose to increase the detection throughput by packing
ROIs from multiple cameras (and optionally, frames) into a
single image. The detection is performed on the packed im-
age and the resulting detections are assigned the originating
camera and frame (Figure 2). The ROIs for each camera
are updated at every frame to an expanded bounding box of
the current detections. In the event of missed detections, the
corresponding ROI is reverted to the full image. In practice,
the subject cannot be too small in the frame or the detector
will fail. Packing 8 ROIs was found to be satisfactory (e.g.
1 frame from 8 cameras or 2 frames from 4 cameras).

3.3.2 Temporal sub-sampling

To increase the frame-rate of our solver in spite of relatively
long CPM detection times, we propose to perform the CPM
detections on a subset of the input frames, resulting in tem-
porally sparse position measurements. For the intervals of
frames without positional constraints, global motion is still
produced because of the acceleration term, which essen-
tially performs ‘dead-reckoning’. In Section 4.1.2 different
sub-sampling strategies are evaluated.

3.4. Implementation details

For the IMU data, we use Xsens MTw wireless IMUs
[13]. These contain gyroscopes, accelerometers and mag-
netometers and through internal sensor fusion they output
an orientation at 60 Hz. The inertial reference frame of each
IMU, Rig is assumed to be consistent between IMUs and in
alignment with the world coordinates through the global up
direction and magnetic north. The IMU-bone positions tib
are specified by manual visual alignment and the IMU-bone
orientations Rib are calibrated using the measured orienta-
tions with the subject in a known pose (the T-pose, facing
the direction of a given axis).

We use a set of 4K video cameras, with intrinsics and
extrinsics calibrated using a chart [21], for simplicity of in-
tegration with the inertial measurements, the global refer-
ence frame of the camera system is chosen to align with
the up direction and magnetic north. The Total Capture
dataset was recorded at HD, 1920× 1080, 60 fps, and Out-
door 1 was recorded at UHD, 3840 × 2160, 60 fps. For
efficiency of processing and display, we use downsampled
video (960× 540) throughout, since realtime decoding and
display of multiple streams of high-resolution video proved
a bottleneck.

To temporally align the IMU and video data an initial
footstamp was performed by the actor, which is visible in
the video and produces a strong peak in acceleration in the
IMU data.

4. Results and evaluation

The approach was tested using an existing indoor
dataset, Total Capture [16] containing ground-truth data
from a commercial mo-cap system, as well as on a new out-
door dataset Outdoor 1. The solver can easily be configured
to take an arbitrary subset of the available IMUs and posi-
tional constraints to evaluate the effect of camera and IMU
sparsity. Note that in this work, all positional constraint in-
formation is obtained from the multiple-view video based
on per-view CPM as discussed in Section 3.3 and no optical
markers or visible targets are used.

First, quantitative results are presented showing the rel-
ative performance with various configurations of IMUs and
cameras, sub-sampling configurations of position detections
as well as the contribution of each term in the cost function.
Next, further quantitative results are presented for multiple
sequences of the Total Capture dataset. Finally, qualitative
results are presented for the Outdoor 1 dataset, which does
not contain ground truth data. Videos of the results are pre-
sented in the supplementary material.

Throughout the experiments, the same weightings were
used for the cost function terms, namely λR = 1, λP =
1 × 10−3, λA = 7 × 10−4, λPP = 0.9, λPD = 0.08.
These values were arrived at by a gradient-based parameter
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Figure 2: Visualization of the ROI packing process for efficient multi-camera/frame CPM detection.

optimization over 200 frames of one motion sequence.

4.1. Indoor capture results

The Total Capture dataset includes five subjects (S) per-
forming various motions including range of motion (ROM),
walking (W), acting (A), and ‘freestyle’ (FS). The subjects
were recorded simultaneously using 13 Xsens MTw IMUs,
8 HD video cameras, and a commercial infra-red motion
capture system consisting of 16 cameras and a dense set of
retro-reflecting markers worn by the subject. The marker-
based input is not used in the runtime solver and is only used
in this work as a ‘ground truth’ reference for evaluation.

4.1.1 Sparse IMUs and cameras

It is desirable to have a minimal capture hardware setup in
order to reduce cost as well as actor setup time. We sim-
ulate the effect of reduced capture hardware by excluding
selected cameras and IMUs from the input. The 13 IMUs
in the full set are placed on the pelvis, sternum, upper and
lower limbs, head and feet. The 6 IMUs in the reduced set
are positioned on the pelvis, lower limbs and head. The full
set of cameras form a ring around the subject and between
2 and 8 of the available cameras are used in these tests.

Figure 3 compares the error using the sparse set of 6
IMUs with the full set of 13 using between 2 and 8 cam-
eras. With the sparse set of IMUs, position and orientation
error both decrease as more cameras are added. With the
full set of IMUs, the position error is lowest for intermedi-
ate numbers of cameras, while the orientation error hardly
varies with the number of cameras. An intermediate number
of cameras, 4, is used to evaluate on additional sequences in
Section 4.1.4.

4.1.2 Temporal sub-sampling of position

We use the following notation for the temporal sub-
sampling (SS) of the position detection: No/Np, where po-
sition detection is performed on the firstNo frames of every
Np frames in the sequence. For example SS 1/2 - every
other frame, SS 2/4 - two out of every four frames. While
SS 1/10 and SS 2/20 require the same amount of computa-
tion, SS 1/10 provides a shorter interval of detections and

shorter time with no detections than SS 2/20. This has an
effect on the quality of the solved motion as shown in Fig-
ure 4, where a range of sub-sampling rates were used, with
No ∈ {1, 2, 3}.

These results suggest that it is optimal to use No = 2.
Having detections for two successive frames results in a
more reliable motion trajectory than having a single frame
more frequently. Having three successive frames, No = 3
means that the interval of no detections is too long and the
error increases. With a quarter of the frames detected (SS
2/8) the error is still reasonably low, while the processing
time is reduced, increasing the output frame-rate. This dec-
imation rate is used to evaluate on additional sequences in
Section 4.1.4.
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Figure 3: Position and orientation error with different sen-
sor configurations, 13 or 6 IMUs and 2-8 cameras. Se-
quence: S2 - FS1, SS 1/1.

4.1.3 Contribution of cost terms

Table 1 shows the relative error in solved bone position and
orientation with selected terms in the cost function disabled.
The results are shown with 4 cameras, with 2/8 detection
sub-sampling.

The orientation term from the IMUs has a strong effect
on both position and orientation error, while the acceler-
ation term has a limited effect, helping with the position
in the 13 IMU case. The position term does not improve
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Figure 4: Position error under a range of detection sub-
sampling rates using No ∈ {1, 2, 3} successive frames.
Note that No = 2 yields the lowest position error across
the sub-sampling range. Sequence: S2 - FS1, 13 IMUs, 8
cameras.

13 IMUs 6 IMUs
Terms Omitted Pos. Ori. Pos. Ori.
IMU (ER, EA) 1.97 4.82 1.27 2.38

Ori. (ER) 2.63 6.27 1.54 2.89
Acc. (EA) 1.11 0.99 1.01 0.97
Pos. (EP ) 188.58 1.00 194.82 1.05

Prior (EPP , EPD) 1.50 4.68 1.42 4.33
Prior Proj. (EPP ) 2.26 6.29 1.63 6.46
Prior Dev. (EPD) 1.16 2.86 1.46 3.24

Table 1: Position and orientation error with various terms in
the cost function disabled, relative to the error using the full
cost function, Equation 2 (Sequence: S2 - FS1, 4 Cam., SS
2/8).

the orientation error, but without it the global position drifts
causing gross error in position. Both the prior projection
and prior deviation terms improve the position and orienta-
tion errors significantly.

4.1.4 Further results

In Table 2, further quantitative results are provided for sev-
eral sequences from the Total Capture dataset, covering the
5 subjects and a range of motion types from slow ROM mo-
tion to challenging sequences including fast motion and un-
usual poses such as lying on the floor (see Figure 6 and refer
to the supplementary video). Figure 5 shows the robustness
of our approach to typical misdetections from the CPM joint
detector.

Four configurations were used: high quality, ‘HQ’ (8
camera, SS 1/1) and high speed, ‘HS’ (4 camera, SS 2/8)
each with both the 13 and 6 IMU sets. The average position
error using 13 IMUs is 6.2 cm using HQ mode, degrading
slightly to 6.8 cm using HS mode, while the orientation er-

S1 S2 S2 S3 S3 S4 S5 S5
FS3 FS1 RM3 FS1 FS3 FS3 A3 FS1 Mean

Pos. error (cm)
Ours, 13 IMU, HQ 7.4 5.3 3.9 6.7 6.7 6.4 6.4 7.0 6.2

Trumble [16] 9.4 16.7 9.3 13.6 8.6 11.6 14.0 10.5 11.7
Ours, 13 IMU, HS 8.5 5.4 3.8 7.4 7.3 7.7 6.6 7.5 6.8
Ours, 6 IMU, HQ 9.8 7.1 6.6 10.0 10.7 9.2 9.0 10.0 9.1
Ours, 6 IMU, HS 14.3 9.4 10.8 19.4 17.1 13.9 13.3 16.5 14.3

Ori. error (deg)
Ours, 13 IMU, HQ 11.2 5.1 5.0 8.3 9.3 8.0 7.6 8.2 7.8
Ours, 13 IMU, HS 11.2 5.1 5.0 8.3 9.3 8.0 7.6 8.2 7.8
Ours, 6 IMU, HQ 16.3 9.2 8.7 13.2 15.7 13.0 11.8 12.1 12.5
Ours, 6 IMU, HS 18.3 10.9 10.6 16.2 19.7 14.8 14.3 15.1 15.0

Table 2: Mean error in position (cm) and orientation (deg)
for sequences from the Total Capture dataset using high
quality (HQ) and high speed (HS) settings, compared to the
approach of Trumble et al. [16].

ror is maintained between HQ and HS (7.8 deg). Our ap-
proach outperforms Trumble et al. [16] across the test se-
quences both for HQ and HS modes. The errors for the 6
IMU case are larger at 9.1 cm, 12.5 deg for HQ and 14.2 cm,
15 deg for HS.

4.2. Outdoor capture results

The Outdoor 1 dataset was recorded outdoors in chal-
lenging uncontrolled conditions with a moving background
and varying illumination. A set of 6 cameras were placed
in a 120◦ arc around the subject and 13 Xsens IMUs. No
ground truth data is available for this dataset. Figure 7
shows a selection of solved frames overlaid on the input
image and full sequences are shown in the supplementary
video.

Figure 5: Solved (blue) and ground truth (yellow) skeletons
overlaid on an input image showing CPM detections in yel-
low and the corresponding locations on the solve skeleton
in blue. Note the robustness to the outlier detection on the
leg. Sequence: S5, FS1.

4.3. Computation time

Figure 8 shows the real-time online frame-rate achieved
using the approach as a function of the sub-sampling rate
(with the CPM detection running in parallel with the main
solver thread). The computing hardware is a standard desk-
top PC with Intel i7 3.6 GHz CPU and NVIDIA GTX 1080
GPU. A frame rate of 30 fps can be achieved with SS 2/8,
while a rate in excess of 60 fps can be can be achieved with



(a) S1, FS3 (b) S2, ROM3 (c) S3, FS3

(d) S3, FS1 (e) S4, FS3 (f) S5, FS1
Figure 6: Selection of frames from the Total Capture dataset. The reference (ground truth) skeleton is shown in yellow, while
our solved skeleton is shown in blue.

(a) Camera layout (b) Camera views (freestyle) (c) Multiple frames (prop interaction)
Figure 7: Selection of solved frames from the Outdoor 1 dataset.
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Figure 8: Output frame-rate of our solver (including detec-
tions) as a function of sub-sampling level. Sequence: S2-
FS1, 4 cameras, No = 2.

more aggressive sub-sampling (SS 2/40). In practice, 30 fps
is sufficient for most applications, and the increase in speed
is not worth the increase in error. Although not tested here,
it should also be possible to use a lower decimation rate by
running two CPM detectors in parallel on two GPUs.

5. Conclusion and further work
The approach presented is flexible in terms of camera

and IMU hardware requirements. It is capable of recovering
the full 6-DoF pose, without drift in global position and can
operate both in constrained studio environments and in un-
constrained setups such as outdoor scenes with varying il-
lumination moving backgrounds and occlusion. The solver
can handle missing or outlier joint detections and even short
periods of complete occlusion because of the inclusion of
the IMU input, degrading gracefully as the hardware is re-
duced. Reducing the number of cameras has less of an ef-
fect on quality than reducing the number of IMUs. Future
work includes optimizing the code and using multiple GPUs
to increase CPM detection throughput. It would also be pos-
sible to extend the approach to handle multiple subjects.
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