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Abstract

This paper presents techniques to animate realistic
human-like motion using a compressed learnt model from
4D volumetric performance capture data. Sequences of 4D
dynamic geometry representing a human performing an ar-
bitrary motion are encoded through a generative network
into a compact space representation, whilst maintaining the
original properties, such as, surface dynamics. An ani-
mation framework is proposed which computes an optimal
motion graph using the novel capabilities of compression
and generative synthesis properties of the network. This
approach significantly reduces the memory space require-
ments, improves quality of animation, and facilitates the
interpolation between motions. The framework optimises
the number of transitions in the graph with respect to the
shape and motion of the dynamic content. This generates
a compact graph structure with low edge connectivity, and
maintains realism when transitioning between motions. Fi-
nally, it demonstrates that generative networks facilitate the
computation of novel poses, and provides a compact motion
graph representation of captured dynamic shape enabling
real-time interactive animation and interpolation of novel
poses to smoothly transition between motions.

1. Introduction
Dynamic surface capture is an emerging media that

keeps evolving into new concepts and areas, allowing the
research community to advance in areas such as, medical
imaging, computer vision, automotive and most popular the
creative industry. Dynamic surfaces are produced from 4D
performance capture studios which generally consist of a set
of synchronised cameras that simultaneously record a per-
formance [9,13,14,30]. The generated content usually con-
sists of sequences of 3D geometry that integrate all visual
features of the scene, for example, the shape, motion and
appearance. This allows replay of the performance from
any viewpoint and moment in time, although it requires a
huge computational effort to process and store 3D dynamic

Figure 1. Character animation using a generative network to syn-
thesise and interpolate motion sequences. The colours represent
different motion sequences.

geometry.
Recent advances have allowed this content to be more

manageable when manipulated [8, 28], hence acquiring the
potential to revolutionise digital content production. Per-
formance capture studio content has been exploited on vir-
tual character motion retargeting [2] through manipulation
of key-points to create novel motions. Interactive charac-
ter animation pipelines usually consist of two stages, mod-
elling a parameterised 3D character and rigging an appro-
priated skeletal structure to match the 3D shape of the char-
acter model. This process requires a high level of skill, and
manual editing to create plausible human-like motions and
maintain realistic appearance.

3D characters are commonly achieved with a high-
resolution 3D laser scan and skeletal structures from artists
which manually adjust skeletal joint positions, the novel
animations are often generated using inverse dynamic and
kinematic solvers on a skeletal motion capture database
[16,25,32,38]. The introduction of motion graphs [1,21,22]
and parameterised skeletal motion spaces [15, 29] allowed
representation and real-time interactive control of character
movement from performance capture data.

This work proposes an animation framework to gener-
ate realistic human-like motion from temporally consistent
reconstructions of dynamic mesh sequences [8, 28]. The
proposed approach learns an efficient compressed represen-
tation of 3D dynamic geometry through a variational au-
toencoder network. Finally, it builds an optimised motion
graph capable of reproducing smooth and realistic motions



using the learned representation of dynamic surfaces. We
demonstrate that the learnt model is capable of interpolat-
ing and generating novel posed surface geometry, and can
be integrated into most animation pipelines as a compact
representation for real-time animation from 4D volumetric
performance capture data.

The open challenges that must be addressed for wide-
spread adoption of this technology are: (i) compact repre-
sentation of 3D dynamic geometry; (ii) ability to efficiently
generate and control animation in real-time with the flexi-
bility of conventional computer graphics and the dynamic
shape detail and realism of 4D performance capture data.
The contributions of this paper can be summarised as fol-
lows:

• An efficient representation of 4D mesh sequences us-
ing variational autoencoders, which exploits the latent
space to allow manipulation and generation of novel
content.

• A motion graph framework integrated with a varia-
tional autoencoder that allows reuse, editing and syn-
thesis of novel motions from performance capture data,
allowing generation of transition between captured se-
quences.

2. Related Work

4D Volumetric Video: has been an active area of re-
search [9, 13, 14, 30], that has emerged to address the in-
creasing demands for realistic content. Recently, Collet et
al. [13] presented a full pipeline to capture, reconstruct and
replay volumetric video. It consists of a set of synchronised
cameras that simultaneously capture the scene from differ-
ent viewpoints.

The benefit of volumetric video is that it captures the full
4D dynamic surface geometry and appearance of a subject
simultaneously. This unlocks an enormous creative poten-
tial for highly realistic animated content production based
on captured performance. Recent research provides frame-
works to ease the manipulation of this content [7, 8, 28, 35],
allowing an artist to perform manual adjustments on 4D dy-
namic geometry and combine multiple sequences in a mo-
tion graph. The limitations are due to data complexity and
dimensionality, making it difficult to manipulate and prop-
agate changes across multiple sequences, and difficult to
maintain the realism of captured human and clothing dy-
namics.

Motion Graphs: Molina-Tanco and Hilton [34] pro-
posed the use of structured graph of skeletal motion se-
quences for controlling digital character animation. This
was constructed using a frame-to-frame similarity metric
which identifies similar poses. The similarity between
frames can be represented as a directed graph, where nodes

represent the pose at a time instance and edges the transi-
tions. The concept of motion graphs has been applied to
volumetric video using both structured meshes (temporally
consistent) [4, 12] and unstructured meshes [27].

Starck et al. [31] and Huang et al. [17] proposed to
construct motion graphs for dynamic surfaces, not requir-
ing pre-process alignment techniques. Prada et al. [27] in-
stead ensures at defined transitions points, mesh alignment
is performed to provide a smooth blending between frames
and optical flow is used to give a ghost free texture. This
overcomes the challenging problem of global mesh align-
ment and only considers alignment of geometry and tex-
ture where necessary. In contrast, Boukhayma et al. [4] and
Casas et al. [12] leverage the correspondence of the struc-
tured mesh sequences to find pose transitions. These works
demonstrate that motion graphs can be used to interpolate
between related motions. Boukhayma et al. [4] shows an
optimal graph technique to automatically interpreted struc-
tured mesh sequences. This was demonstrated to maintain
realism between motion transitions via a novel transition
cost function that weights its realism, and an optimised mo-
tion graph that keeps the minimum necessary transitions be-
tween frame sequences.

Learnt Deep Mesh Representations: Tan et al. [33]
use a variational autoencoder to learn a representation of pa-
rameterised dynamic shapes. Their network trains on a pre-
processed feature space of the training data, demonstrating
very low reconstruction error for the ground truth shapes.
Lombardi et al. [23] proposed a learnt model of shape and
appearance conditioned on viewpoint allowing recovery of
view-dependent texture detail. This network demonstrates
the ability to learn 3D dynamic shapes from vertices, avoid-
ing the need to pre-process information. This demonstrates
the real-time capabilities of variational autoencoders, being
able to decode shape and appearance in less then 5 millisec-
onds.

The method outlined in this paper overcomes the need to
explicitly load full sequences of 4D dynamic shapes, which
are often computationally and memory expensive [18, 19].
The use of a variational autoencoder for learning allows
us to synthesise plausible novel posed meshes which have
not been observed in the captured mesh sequence. During
training, our network learns a latent representation of posed
mesh geometry. This enables manipulation of dynamic sur-
faces via a low dimensional representation. This is useful
for generalisation to novel motions and also for temporal
upscalling. We demonstrate that this learnt representation
can be used as the basis for real-time mesh animation from
multiple capture mesh sequences.

3. Dynamic Surface Encoding
The following section introduces the use of generative

networks to efficiently represent 4D mesh sequence from



volumetric video content. Firstly, we discuss how to pre-
process dynamic surfaces using state-of-the-art techniques
to make it more suitable for neural networks. Secondly, we
introduce two methods to compress 3D dynamic geometry
using an autoencoder and a variational autoencoder. The
advantage and limitations of both architectures is evaluated.
This shows that the compact latent variable representation
of the variational autoencoder is advantageous for mesh se-
quence variation. Finally, we conclude with a range of ap-
plications for the chosen approach.

3.1. Dynamic Surface Pre-processing

Dynamic surfaces represent sequences of 3D meshes of
an actor or scene, preserving visual features, such as shape,
motion and texture appearance of the surface. This content
usually arises from performance capture studios which con-
sist of multiple synchronised cameras focusing on a capture
volume, with the ability to record a performance and con-
vert it to a digital format described as volumetric video.

Performance capture systems tend to provide temporal
inconsistent geometry for the captured performance, mak-
ing it difficult to track the shape and appearance. Therefore,
we use a skeleton-driven surface alignment framework [28]
to provide 4D temporally consistent geometry and skele-
tal structures for animation control. In this work 4D ref-
erence to the known temporal correspondence of surface
points across the mesh sequence [7].

This framework receives as input synchronised multiple
view video from calibrated cameras and returns 3D skele-
tal pose and temporally consistent 4D mesh sequences. The
purpose of the networks described in the following section
is to learn a low dimensional latent representation of the
dynamic 4D mesh shape. Therefore, it is important that our
input data does not contain global translations. To achieve
this we use a skeleton-based mesh alignment framework to
obtain a 4D mesh sequence and align all meshes to a com-
mon origin. The input data used on the following section
consists of centred temporally consistent 3D meshes.

3.2. Autoencoder Architecture

An autoencoder neural network is an unsupervised learn-
ing algorithm that learns an approximation to the input data.
In this work the autoencoder consist of an encoder P (X|z)
and a decoder Q(z|X̃) so that X ≈ X̃ . The encoder maps
the data X onto a latent vector z, and the decoder produces
reconstructions X̃ of data X from the latent vector z. The
architecture of the encoder consists of three fully connected
layers, the first two layers use Leaky ReLu [24] activation
layer and the output layer uses a linear activation layer. The
encoder transforms the vertices X of mesh M = {X,C}
into a 128 dimensional latent vector z using fully connected
layers. Where X = [x1, x2, ..., xN ] is the 3N vector of
mesh vertices and C is the constant mesh connectivity.

The decoder learns how to interpret the latent vector z to
reconstruct an approximation X̃ of the input mesh X . The
architecture of the decoder similarly to the encoder consist
of three fully connected layers, although the output layer
uses a tanh activation layer [33].

Training Details: We train our autoencoder for 104

epochs, which is optimised through validation data to avoid
over-fitting with a learning rate of 0.001, where validation
data is randomly sampled from the training data. We use
stochastic gradient descent with a momentum of 0.9 to op-
timise the L2 = ||X̃ −X||2 loss between mesh vertices X̃
and the ground truth samples X ∈M .

3.3. Variational Autoencoder Architecture

Variational autoencoders (VAE) have emerged as one of
the most popular generative models, because they can be
built on top of deep neural networks and provide a com-
pact latent space. The VAE aims to maximise the probabil-
ity distribution of the encoded data samples X , and allows
the generation of novel data X̃ by sampling from the latent
space. This is the advantage against using autoencoder neu-
ral network, which simply encodes the data samples X as a
distinct latent vectors z in the latent space which may lead
to discontinuities in the latent space. This does not allow
the decoder to predict a plausible approximation of a latent
vector z when this does not exist in the original encoded
data.

Generative models can capture data dependencies by
learning low-dimensional latent variables z to form a latent
spaceZ ∈ Rd, where d is the dimension. The model aims to
maximise the probability of each X in training as follows,

p(X) =

∫
p(X | z) p(z)dz (1)

Here, the latent variables z are sampled according to a prob-
ability density function p(X) defined over Z ∈ Rd, and the
distribution p(X|z) denotes the maximum likelihood esti-
mation which allows to make dependencies of X on the la-
tent vector z, and the p(z) is the prior probability distribu-
tion of a latent vector z. In this work we chose the output of
p(X|z) to be a Guassian distribution

p(X | z) = N (X | µ(z), σ(z)2 ∗ I) (2)

Where µ(z) is the mean function and σ(z) is the co-variance
function multiplied by the identity matrix I . The VAE
model finds a probabilistic distribution of the trained data
through an encoder and decoder architecture. The encoder
is trained to map the posterior distribution of data samples
X to the latent space Z ∈ Rd meanwhile forcing the latent
variables z to comply with the prior distribution of p(z).
However, both the posterior distribution p(z|X) and p(X)
are unknown. Therefore, VAE gives the solution that the
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Figure 2. Variational autoencoder framework. The input and the output of the encoder and decoder respectively, are vertices. The first two
dense layers of the encoder and decoder use Leaky ReLu [24].

posterior distribution is a variational distribution Q(z|X̃),
computed by a neural network. In order to make Q(z|X̃)
consistent with the distribution p(z), the Kullback-Leiber
(KL) divergence [20] is:

argminKL(Q(z | X̃) || p(z)) (3)

This network minimises the loss L of p(X|z) over the
whole latent space Z ∈ Rd, where ω = batch size × num-
ber of vertices, as follows:

L = (X −Q(p(X | z) | X̃)) + (
KL(Q(z | x) || p(z))

ω
)

(4)
The decoder is trained to map the latent variables z to gen-
erate data samples X̃ that reconstruct the optimal approxi-
mation of the true sample X from the latent vector z.

The VAE model pipeline used to train on dynamic sur-
faces is summarised in Figure 2.

Training Details: For the network to learn a good distri-
bution we train our variational autoencoder for 104 epochs,
which is optimised through validation data to avoid over-
fitting with a learning rate of 0.001. We set the prior proba-
bility over latent variables to be a Guassian distribution with
zero mean and unit standard variation, p(z) = N(z; 0, I).
We use a stochastic gradient descent with a momentum of
0.9 to optimise the L2 loss between reconstructed vertices
and the ground truth samples, and simultaneously the KL
divergence of both probabilistic distributions.

Table 1. The table shows the lowest training loss on sequences
using different latent dimensions.

Latent Dimension
Dataset 16 64 128 256

Dan [12] 0.442 0.413 0.177 0.212
Roxanne [30] 0.186 0.117 0.087 0.113
Thomas [6] 0.214 0.135 0.115 0.150

4. Motion Graphs
The following section demonstrates the necessary steps

to generate motion graphs for compressed 3D dynamic ge-
ometry [3, 5, 10, 11], see Figure 4, firstly we introduce the
pre-requisites for the framework to be initialised. Secondly
we discuss the metrics chosen to evaluate similarity be-
tween the input data, and the cost to travel from frame to
frame. Finally, a real-time motion synthesis approach to
generate 4D meshes sequences with interactive animation
control by concatenating and blending between the captured
mesh sequences to generate novel mesh poses.

4.1. Input Data

The framework receives as input data, skeletal motion of
each chosen sequencemi, corresponding latent vectors zi ∈
Sn, where Sn represents a sequence containing a collection
of latent vectors zi which corresponds to motion frames,
and lastly we use the pre-trained decoder network Q(z|X̃)
to interpret the latent vectors zi ∈ Sn.

The decoder network produces X̃ for every zi ∈ Sn

which represents a temporally aligned 4D mesh sequence,
i.e. the topology and vertex connectivity is constant across
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Figure 4. Motion Graph Pipeline, it consists of an offline and an online block. The offline block we train the network on 4D mesh
sequences and initialise the motion graph using the trained decoder. The online block generates original and interpolated posed mesh
allowing real-time rendering.

all sequences. In this work a sequence of 4D mesh sequence
is a virtual representation of a human performing an arbi-
trary movement, not restricted in motion or clothing.

The construction of the motion graph is independent of
the posed model used, allowing the framework to generalise
its application to other models. Motion graphs are usually
interpreted as a directed weighted graph structure built on
4D mesh sequences, where nodes represent frames contain-
ing shape and motion, and edges represent possible transi-
tions between frames. In this work, edge weights account
for both surface shape and structure and transition duration.

4.2. Pre-processing

The first step in the process is to automatically connect
frames within the same sequences, and if possible create
loops for cyclic motions such as the sequence can infinitely
repeat, see Figure 4. Loops are generated via looking up
using a similarity matrix s(Ms

i (tu),M
s
j (tv)) of each se-

quence, and automatically choose the minimum cost within
a window of a pre-defined number of frames, see Sections
4.3 and 4.4. Transition within the same sequence should
produce the most natural motion, hence the shape and mo-
tion cost should be very small. The next step is to fully
connect the graph by adding all possible transition combi-
nations between sequences to allow better path estimations
to be found for all frames. This will generate a fully con-
nected graph with appropriated edge weights using shape,

motion and dynamic time warping metrics, as detailed in
the following sections. Lastly, we optimise the graph by
using Dijkstra’s algorithm to minimise the number of tran-
sition in the final motion graph, as detailed in Section 4.5.

4.3. Shape Similarity Metric

The shape similarity matrix is computed for every pair
of frames in the motion framework s(Ms

i (tu),M
t
j (tv)).

For a given latent vector zi ∈ Sn the decoder Q(z|X̃)
reconstructs temporally consistent geometry where vertex
correspondences between the source and target meshes are
known, therefore its possible to compute the shape and mo-
tion similarity between any pair of meshes. To measure
similarity we use the Euclidean distances and velocities be-
tween mesh vertices: s(Ms

i (tu),M
t
j (tv)) = 1

Nv
(||xsi −

xtj ||+ ||vsi −vtj ||), where vertex velocity vsi (tu) = xsi (tu)−
xsi (tu − 1) , and Nv is the number of vertices. The ma-
trix is then normalised as follows: s(Ms

i (tu),M
t
j (tv)) =

s(Ms
i (tu),M

t
j (tv))−min(s(Ms

i (tu),M
t
j (tv)))

max(s(Ms
i (tu),M

t
j (tv)))−min(s(Ms

i (tu),M
t
j (tv)))

.

We compute the shape and motion similarity for ev-
ery pair source Ms

i (tu) and target M t
j (tv) mesh as

s(Ms
i (tu),M

t
j (tv)) for all frames tu ∈ [0, Ti], tv ∈ [0, Tj ]

giving a complete shape similarity matrix Sst
ij (u, v) for all

frames in the framework. The pre-computed similarities Sst
ij

for all frames allows us to evaluate in real-time the cost in
mesh deformation between any source and target meshes.



4.4. Transition Edge Cost

An edge in the motion graph represents a transition be-
tween two frames, frames will be describe as nodes in this
section. For every edge we associate a weight to qualita-
tively represent the similarity of the shape of the transition
between nodes. Realistic transitions should require little
surface deformation, hence we use a metric that take into
account the optimal surface interpolation cost between any
pair of nodes [4]. The cost is the weighted sum of interme-
diate poses between node u and node v.

Firstly, in order to smoothly blend frame u from a 3D
mesh sequence to frame v from another sequence, we need
to consider a blend window length b. This window repre-
sents a successive number of frames bu, on the source se-
quence it begins at frame u and ends at frame u+ bu− 1, in
the destination sequence a window bv ending at frame v and
starting at frame v−bv+1, see Figure 4. Once, the window
frame is initialised between source and target sequence, it
is necessary to extrapolate the frames that gradually blend
both sequences, generating smooth realistic transitions. To
extract the optimal frames from source and target sequence
we use standard dynamic time warping (DTW) [26, 36, 37]
to estimate the best temporal warps wu and wv respectively
with respect to the metric defined in Section 4.3. The transi-
tion duration varies within a third of a second and 2 seconds
following the work of [36], hence we allow the length bu

and bv to vary between boundaries bmin and bmax.
Secondly, we choose the transitions with the minimal to-

tal surface deformation cost Cd(u, v) through the path gen-
erated from the DTW algorithm, as shown in Figure 4.

Cd(u, v) = min
bu,bv,wu,wv,Cl

∑
t∈[0,Cl]

s(wu
t , w

v
t ) (5)

where s(wu
t , w

v
t ) is the shape similarity cost defined in Sec-

tion 4.3, and Cl is the length of the path found by the DTW
algorithm considered as the transition duration, see Figure
4. The optimisation above finds the following optimal pa-
rameters (bu, bv, wu, wv, Cl), which are considered later for
motions synthesis. Similar to Section 4.3, we define the
edge weight between nodes to be the surface deformation
cost Cd(u, v) and its interpolated duration cost Cl(u, v).
The following expression summarises the definition for the
edge cost between poses u and v:

Ce(u, v) = Cd(u, v) + α Cl(u, v) (6)

in the case u and v are from the same sequence we can
assume that the surface deformation should be minimal,
therefore if u < v, we assume C̃e(u, v) = min[α(v −
u), Ce(u, v)] , u < v [3]. To control the tolerance be-
tween surface deformation and transition duration we add
weight α, the costs Ce and C̃e mean the edge weights.

This process will create a fully connected digraph where
edges are weighted for the similarity of the shape of the
transition between frames, in the next step we will discuss
how to prune and optimise the connectivity of the complete
digraph, see Figure 4.

4.5. Motion Graph Optimisation

The last step in the framework aims to find a global opti-
mal solution to minimise the number of transitions between
nodes. Plausible transitions are achieved by selecting the
minimum cost transition on the similarity matrix between
sequences. From Section 4.4, a fully connected digraph was
built, connecting every pair of node sequences. Therefore
selecting the minima transition of every node will possi-
bly maintain a dense connectivity in the graph. Instead fol-
lowing the work of [3], we implemented a global optimal
strategy that extracts and maintains only the best paths be-
tween all pair of nodes. Given the fully connected digraph,
we use Dijkstra algorithm on every pair of nodes to extract
the shortest path between source and target. Once this pro-
cess is completed we remove all edges that do not belong
to the new generated paths, giving us a connected digraph
containing only the necessary transition with the least tran-
sition cost. This solution will guarantee the best realism
when transitioning from frames of different sequences.

4.6. Motion Synthesis

This section discusses how we convert encoded dynamic
surfaces into a continuous animation of 3D mesh surfaces.
As we discussed previously at this stage we have an optimal
connected digraph which contains nodes and edges, where
nodes are 3D mesh frames and edges represent transitions.
To create continuous animation, it is necessary in real-time
to find the least costly transition from source node u to tar-
get node v. From default the least costly transition is a tran-
sition within the same sequence, therefore if the motion is
not interactively changed by the user the framework will in-
finitely play the same sequence. In the case where the user
requests to change the current motion the framework pro-
cesses the minimum cost Cd(u, v) of the current state u to
the selected motion target v, and returns the following pa-
rameters (bu, bv, wu, wv, Cl), as discussed in Section 4.4.
This allows us to create smooth intermediate blend frames
with a transition length of Cl. The following sections will
discuss how we generate temporally consistent 3D meshes
and intermediate interpolated meshes.

4.6.1 Mesh Synthesis

Every node in the graph has a latent space of the original
3D mesh that allows in real-time to extrapolate the original
mesh. Therefore, the decoder described in Section 3.3 re-
constructs the latent representation zi for the current node.



4.6.2 Mesh Interpolation

Intermediate blend frames are only possible because of the
characteristics of the VAE described in Section 3.3. As we
described previously, the VAE generates a compact latent
space where samples around some area have a high level
of similarity, although because of its compact properties the
VAE creates boundaries in the latent space where the re-
constructed 3D mesh have high similarity error. This issue
is avoided because the computed graph avoids transitions
where the similarity error is extremely high. For interpolat-
ing the 3D mesh we perform a linear interpolation of two
given latent vectors, and reconstruct its result using the pre-
trained decoder Q(z|X̃), see Figure 7.

5. Results and Evaluation

This section presents results and evaluation for the
proposed animated dynamic surface using generative
networks, presented in Section 4.5. Dan [12] and Rox-
anne [30] datasets are reconstructed using multi-view
stereo [30] and temporally aligned with HSDSR [28] which
allows for surfaces pose manipulation. Thomas dataset [6]
consists of four sequences of temporally aligned meshes.
Examples of character animation using dynamic surfaces
are shown in Figures, 1, 5 and 6. Results demonstrated the
usability of neural networks to facilitate the representation
and compression (see Table 2) of highly detailed meshes.

Error Metrics: Evaluation on mesh is performed
using one-sided Hausdorff distance defined as
HB(A) = supa∈A d(a,B), where d(a,B) is the dis-
tance from a point a to a set B, which has shown good
measurements between two 3D meshes. The variational
autoencoder uses the Equation 4 in Section 3.3 as metrics
to predict plausible reconstructions. The comparison was
performed between the original trained data, to ensure
minimum error when sampling the original sequences,
and validation data to guarantee a plausible result when
generating unseen mesh, see Figure 7 and 9.

Latent Dimensions: We have evaluated our model
with different values for the latent space (see Table 1),
according to the reconstruction loss Equation 4. The results
suggest that using 128 dimensions for the latent space gives
a good trade-off between compression and shape detail.

Performance: Presented results were generated us-
ing a desktop PC with an Intel Core i7-6700K CPU,
64GB of RAM and a Nvidia Geforce GTX 1080 GPU.
Pre-processing performance depends on the number of
sequences, the decoder performance achieves ≈ 30 frames
per second (fps).

Table 2. The table illustrates the number of vertices and frames,
and disk space occupied in Megabytes (MB).

Dataset vertices frames original latent space decoder
Dan [12] 3431 1447 636.4MB 3.7MB 12.6MB

Roxanne [30] 2475 414 129.7MB 1.1MB 9.2MB
Thomas [6] 5002 212 185.5MB 0.46MB 18.3MB

Compression: Table 2 demonstrates that the learnt
representation is capable of compressing the dynamic mesh
geometry by ≈ 93%. It is required to store the decoder and
the latent variables for each frame in the motion dataset.

Limitations: The proposed network suffers from dis-
continuities in areas where there is insufficient training
data, creating wrong transitions between meshes that
largely differ in pose and shape, for example, two nearby
samples from the latent space do not guarantee to be
similar, see Figure 8. Although this limitation is overcome
with motion graphs which do not allow for such distinct
transitions. Currently the network is only able to represent
one character a time, an interesting extension for future
work would be to encode multiple characters in a single
space, or a single person wearing multiple types of clothing.

6. Conclusions
The propose generative network is capable of both pro-

viding a compact representation of multiple motion capture
sequences with an order of magnitude reduction in size. The
variational autoencoder also supports interpolation in the la-
tent space to synthesise novel intermediate motions allow-
ing smooth transitions between captured sequences. Using
the decoder part of the variational autoencoder allows ap-
plications to use less memory in run-time, therefore making
it more suitable for technologies with memory constraints.
We have illustrated that the proposed method is able to pre-
serve shape details and motion from various public datasets.
The animation framework is independent of the network ar-
chitecture, allowing for future improvements in either of the
frameworks. For instance, the neural network can be im-
proved to generate posed meshes constrained on a skeletal
pose, this will allow browsing through existing motion cap-
ture data and expand the range of motion captured on the
original dynamic surface sequences. The animation frame-
work can be extended to parameterised motion, allowing
increased interactivity and motion control.
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Figure 5. The image illustrates Dan, Roxanne and Thomas character performing several animations, top-left: transition from walk to jog
sequence; top-right: from short to long jump sequence; bottom-left: from walk to stagger sequence; bottom-right: from walk to run
sequence. The colours illustrates different sequences and transition blends.

Figure 6. The image illustrates Dan character following a pre-define path, the image on the left is performing a walk sequence, and on the
right a transition from walk to a long jump. The colours illustrates different sequences and transition blends.

Figure 7. Interpolation in the latent space, the mesh coloured in blue
represent the source and the mesh coloured in red is the target, in
between we have the interpolated steps.

Figure 8. Latent space interpolation, the mesh coloured in blue is the
source and in red the target, in between the interpolated steps. The
circles represent artefacts caused from the interpolation.

Figure 9. The left column shows the reconstruction error of the training (seen) data, the right column shows the reconstruction error for
validation (unseen) data.
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