

UNIVERSITY OF SURREY

Centre for Vision, Speech and Signal Processing

MOTIVATION

Existing light-field methods suffer from following limitations:

- 1. Limited to static scenes due to the requirement to acquire a dense scene representation;
- 2. Large amount of data and the absence of methods to infer temporal coherence pose major challenges in storage, compression and editing.

1A	<u>19</u>	ĮA	19	646	1	ţį.	ţ.	14	670	646 670	2
10		<u>j</u> a	ţe	19	14	14	19	ją.	14		
10	11		19	<u>Ì</u> ĝ	14	14	14	14	14		
		10	<u>k</u> a		14	14	1	14	10		Z
		li li	nput l	light-fi	ield v	video				2D dense flow	4

CONTRIBUTIONS

- 1. Temporally coherent 4D reconstruction of dynamic light-field video;
- 2. EPI from sparse light-field video for spatio-temporal correspondence;
- 3. Sparse-to-dense light-field scene flow exploiting EPI image information;
- Efficient light-field video representations to facilitate editing for live action VR.

METHODOLOGY

ACKNOWLEDGEMENTS

This research was supported by the InnovateUK grant for Live Action Light fields for Immersive Virtual Reality Experiences (ALIVE) project (grant 102686).

4D Temporally Coherent Dynamic Light-field Video

Mustafa, M. Volino, J.-Y. Guillemaut and A. Hilton, {a.mustafa, m.volino, j.guillemaut, a.hilton}@surrey.ac.uk Website: http://cvssp.org/projects/4d/4DLFV/

RESULTS

Sparse temporal correspondences and dense flow results on 2 light-field sequences: Sitting and Waking up

4D temporal alignment between frames for Walking and Magician dataset

EVALUATION

Dense flow comparison results on different light-field sequences. DEwLF: dense flow without light-field consistency, 4DMatch[1], Deepflow[3] & Simpleflow[2]

Datasets	Prop.
Walking	0.45
Sitting	0.51
Waking up	0.39
Running	0.65
Magician	0.59

Silhouette overlap error for all the datasets. Prop. represents proposed approach, 4DM is 4DMatch, DF is Deepflow and SF is Simpleflow

REFERENCES

- ICCV, 2013

4	D	М	а	tc	h
-			a	LL	

DFwLF	4DM	DF	SF
0.59	0.58	0.81	1.05
0.73	0.71	1.13	1.83
0.56	0.53	0.89	1.17
0.87	0.92	1.23	1.95
0.82	0.83	1.05	1.67

A. Mustafa, H. Kim, and A. Hilton. 4d match trees for non-rigid surface alignment. In ECCV, 2016

2. M.W. Tao, J. Bai, P. Kohli, and S. Paris. Simpleflow: A noniterative, sublinear optical flow algorithm. In Eurographics, 2012 3. P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Deepflow: Large displacement optical flow with deep matching. In