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A B S T R A C T

We propose and evaluate several deep network architectures for measuring the simi-
larity between sketches and photographs, within the context of the sketch based image
retrieval (SBIR) task. We study the ability of our networks to generalize across diverse
object categories from limited training data, and explore in detail strategies for weight
sharing, pre-processing, data augmentation and dimensionality reduction. In addition
to a detailed comparative study of network configurations, we contribute by describing
a hybrid multi-stage training network that exploits both contrastive and triplet networks
to exceed state of the art performance on several SBIR benchmarks by a significant
margin.
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1. Introduction1

Sketches are an intuitive modality for communicating every-2

day concepts, and are finding increased application on modern3

touch-screen interfaces (e. g. on tablets, phones) where gestu-4

ral interaction is natural. Such devices are now the platform on5

which the majority of today’s visual content is consumed, mo-6

tivating research into sketch as a medium for searching images7

and video.8

This paper addresses the problem of sketch based image9

retrieval (SBIR); searching a collection of photographs (im-10

ages) for a particular visual concept using a free-hand sketched11

query. We explore SBIR from the perspective of a cross-domain12
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modelling problem, in which a low dimensional embedding is 13

learned between the space of sketches and photographs. Tradi- 14

tionally, SBIR has been addressed using sparse feature extrac- 15

tion and dictionary learning, following the successful applica- 16

tion of the same to recognition and search in natural images 17

[1, 2, 3]. Deep convolutional neural networks (CNNs) have 18

since gained traction as a powerful and flexible tool for machine 19

perception problems [4], and recently have been explored for 20

SBIR particularly within fine-grain retrieval tasks, e.g. to find 21

a specific shoe within a dataset of shoes [5, 6]. Despite early, 22

promising results, it is unclear how suitable embeddings learned 23

by these multi-branch networks are for generalizing across ob- 24

ject categories [3, 2]. For example, enabling a user to search for 25

visual attributes within datasets containing diverse objects (e. g. 26

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
www.cvssp.org


2 Preprint Submitted for review / Computers & Graphics (2018)

a specific furniture form, a spotted dog, or particular building1

structure); a problem explored more extensively by prior work2

[2, 3, 7].3

The technical contributions of this paper are two-fold. First,4

we present a comprehensive investigation of triplet embedding5

strategies evaluating these against popular SBIR benchmarks6

(Flickr15k [3], TU-Berlin [2]). In the spirit of recent ‘details’7

papers studying deep networks for object recognition [8], we8

explore appropriate CNN architectures, weight sharing schemes9

and training methodologies to learn a low-dimensional embed-10

ding for the representation of both sketches and photographs —11

in practical terms, a space amenable to fast approximate nearest12

neighbor (ANN) search (e. g. L2 norm) for SBIR. Second, we13

describe a novel triplet architecture and training methodology14

capable of generalizing across hundreds of object categories,15

and show this to outperform existing SBIR methods by a sig-16

nificant margin on leading benchmarks [3, 2].17

Concretely, we explore several important questions around18

effective learning of deep representations for SBIR:19

1. Generalization: Given the diversity of visual concepts20

in the wild (∼105 categories) and the challenges of annotating21

large sketch datasets (current best ∼102 categories [2]) how well22

can a network generalize beyond its training to unseen sketched23

object categories? Are class diversity and volume of exemplars24

equally important?25

2. Input Modality: SBIR and the related task of sketched26

image classification variously employ edge extraction as a pre-27

processing step to align the statistics of sketch and photo dis-28

tributions. Is this a beneficial strategy when learning a SBIR29

feature embedding?30

3. Architecture: Recent exploration of SBIR has indicated31

triplet loss CNNs as a promising archetype for SBIR embed-32

ding, however what kind of loss objective should be considered33

and where, and which weight sharing strategies are most ef-34

fective? What is the best way to enforce a low dimensional35

embedding for efficient SBIR indexing?36

2. Related Work and Contributions 37

Sketch based Image Retrieval (SBIR) began to gain momen- 38

tum in the early nineties with color-blob based query systems 39

such as Flickner et al.’s QBIC [9] that matched coarse attributes 40

of color, shape and texture using region adjacency graphs. Sev- 41

eral global image descriptors for matching blob based queries 42

were subsequently proposed, using spectral signatures derived 43

from Haar Wavelets [10] and the Short-Time Fourier Transform 44

[11]. This early wave of SBIR systems was complemented in 45

the late nineties by algorithms accepting line-art sketches, more 46

closely resembling the free-hand sketches casually generated by 47

lay users in the act of sketching a throw-away query [12]. Such 48

systems are characterised by their optimization based match- 49

ing approach; fitting the sketch under a deformable model to 50

measure the support for sketched structure within each photo- 51

graph in the database [13, 14]. Despite good accuracy, such ap- 52

proaches are slow and scale at best linearly. It was not until the 53

2010 decade that global image descriptors were derived from 54

line-art sketches, enabling more scalable indexing solutions. 55

2.1. SBIR with shallow features 56

Mirroring the success of gradient domain features and dictio- 57

nary learning methods in photo retrieval, both Eitz et al. [15] 58

and Hu et al. [1] extended Bag of Visual Words (BoVW) to 59

SBIR, also proposing the Flickr15k benchmark [3]. Sparse fea- 60

tures including the Structure Tensor [16], SHoG [15], Gradient 61

Field Histogram of Oriented Gradients (GF-HOG) [3] and its 62

extended version [17] are extracted from images pre-processed 63

via Canny edge detection. Chamfer Matching was employed 64

in Mindfinder [18], later adopted by Sun et al. [19] for scal- 65

able SBIR indexing billions of images. Qi et al. [20] imple- 66

mented an alternative edge detection pre-process delivering a 67

performance gain in cluttered scenes. Mid-level features were 68

explored through the HELO and key-shapes schemes of Saave- 69

dra and Barrios [21, 7, 22]. Their latest work [7] uses learned 70

key-shapes and leads the shallow learning approaches. 71

2.2. SBIR with deep networks 72

SketchANet [23] was among the earliest deep networks 73

for sketch, exploring recognition (rather than search) using a 74
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single-branch network resembling a short-form AlexNet [4].1

SketchANet forms a component of the very recent work of2

Bhattacharjee et al. [24], coupled with a complex pipeline in-3

cluding object proposals, and query expansion. Although we4

also explored SketchANet, and compare with several other con-5

temporary architectures which we show yield superior perfor-6

mance in a triplet framework (Sec. 4).7

An early work exploring multi-branch networks for sketch8

retrieval (of 3D objects) was the contrastive loss network of9

Wang et al. [25] which independently learned branch weights10

to bridge the domains of sketch and 2D renderings of silhou-11

ette edges. In a recent short paper, Qi et al. [26] also propose12

a two-branch Siamese network with contrastive loss. Their re-13

sults, although comparable with other methods using shallow14

features, are still far behind state-of-the-art [24, 6] by a large15

margin. As we show later, learning a single function to map16

disparate domains to the search space appears to under-perform17

designs where branch weights are learned independently or18

semi-independently.19

Triplet CNNs employ three branches [27]: (i) an anchor20

branch, which models the reference object, (ii) one branch rep-21

resenting positive examples (which should be similar to the22

anchor) and (iii) another modeling negative examples (which23

should differ from the anchor). The triplet loss function is re-24

sponsible for guiding the training stage considering the rela-25

tionship between the three models. Triplet CNNs have recently26

been explored for face identification [28], tracking [29], photo-27

graphic visual search in[27, 30] and for sketched queries in or-28

der to refine search within a single object class (e. g. fine-grain29

search within a dataset of shoes) [5]. Similarly, a fine-grained30

approach to SBIR was adopted by the recent Sketchy system of31

Sangkloy et al. [6] in which careful reproduction of stroke de-32

tail is invited for object instance search. In the former work [5],33

the authors train one model for each target category, and the em-34

bedding is learned using an edgemap extracted from a relatively35

clutter-free image. They report that using a fully-shared net-36

work was better than use two branches without weight sharing.37

However, the authors in [6] suggest it is more beneficial to avoid38

sharing any layers in a cross-category retrieval context. Re- 39

cently, a hybrid design was explored by Bui et al. [31] using the 40

same architecture on both branches but sharing certain layers. 41

However, as their model learns mapping between sketch and 42

edgemap (rather than image directly) its performance is lim- 43

ited. Furthermore, it is still unclear whether triplet loss works 44

better than contrastive loss, with [6, 31] supporting the former 45

but [32] claiming the latter. Open questions remain around op- 46

timal training methodology, architecture, weight-sharing strate- 47

gies, and loss functions, as well as the generalization capability 48

of deep models for SBIR. 49

Our work explores these open questions, and broadens the 50

investigation of deep learning to SBIR beyond intra-class or in- 51

stance level search to retrieval across multiple object categories. 52

To avoid confusion we hereafter refer as no-share or Hetero- 53

geneous those multi-branch networks for which there are no 54

shared weights between layers [25]; as full-share or Siamese 55

those for which all branches have shared weights in all lay- 56

ers [5, 27]; and partial-share or Hybrid those for which only 57

a subset of layers are shared. 58

Our contributions for this paper are three-fold: 59

• A generic multi-stage training methodology for cross- 60

domain learning that leverages multiple loss functions in 61

training shared networks as illustrated in Figure 1. 62

• An extensive evaluation of convnet architectures and 63

weight sharing strategies. 64

• State-of-the-art performance on three standard SBIR 65

benchmarks, outperforming other approaches by a signifi- 66

cant margin. 67

3. Methodology 68

We propose a multi-stage training methodology and inves- 69

tigate several network designs, comparing the Siamese archi- 70

tecture with the Heterogeneous and Hybrid ones. Inspired 71

from [31], we aimed to develop a training strategy for partial 72

sharing networks. However, unlike [31] who employed a sin- 73

gle training phase with a single loss function to concurrently 74
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stage 1 stage 2 stage 3-4

Fig. 1. Our training procedure illustrated with a SketchANet-AlexNet architecture: pre-training the unshared layers (stage 1), and the shared layers (stage
2) separately before plugging those into a triplet network (stage 3 and 4).

train both shared and unshared parts of their sketch-edgemap1

network, we believe training a sketch-photo network should re-2

quire more complex procedures. Additionally, we integrate the3

two most widely used regression functions in deep convnet, the4

contrastive loss and triplet loss, in our training procedure.5

3.1. Network architecture6

When learning a cross domain mapping between sketch and7

photo using deep convnet, at least two CNN branches are re-8

quired to deliver feature embedding for these domains. The9

sketch branch and image branch may have the same or dif-10

ferent architecture. Let XS = {xS } and XI = {xI} be col-11

lections of training sketches and images. Supposed FS
θS ,θC

(xS )12

and F I
θI ,θC

(xI) are the embedding functions for sketch and im-13

age domains respectively. Parameters θS and θI represent14

domain-specific layers; while θC are the common/shared parts.15

In the scope of this paper, we investigated SketchANet [23],16

AlexNet [4], VGG 16 layers (VGG16) [33] and InceptionV117

(GoogLeNet) [34] for the sketch branch {θS , θC}; and AlexNet,18

VGG16 and InceptionV1 for the image branch {θI , θC}, al-19

though other architectures can also be employed using the same20

methodology.21

Differences in design can also arise from the degree to which22

layers within the two branches share weights. Most of the ex-23

isting approaches eliminate either {θS , θI} (i. e. full-share) as24

in [35, 26, 5], or θC (i. e. no share) in [6, 25]. It was shown25

in [36, 37] that low-level features are often learned in bottom 26

layers of a CNN network while higher semantic features tend to 27

emerge from top layers. Therefore, intuitively we want to share 28

the top layers so that the feature embedding is learned across 29

domains considering the semantics (e.g. categories/classes), 30

and let the bottom layers be learned separately for each domain. 31

If the sketch and image branch architectures are completely dif- 32

ferent, we possibly need one or several fully-connected (FC) 33

layers unifying the branches, as well as loss functions pre- and 34

post- unification. We explore several design permutations, eval- 35

uating their performance in Sec. 4 with the aim of testing the 36

generalization capability of the network across categories, and 37

identifying the best performing architecture (CNN architecture, 38

loss) and training strategy to optimize retrieval accuracy. 39

At certain training stages, a contrastive loss or triplet loss

can be employed. We normalize inputs prior to these losses.

The contrastive loss function accepts a pair of input examples

(xS , xI) and regress their embedding closer or push them away

depending on whether or not xS and xI are similar [38]. Let Y

represents the label of a training pair (xS , xI) such that:

Y =


0 if (xS , xI) are similar

1 if (xS , xI) are dissimilar
(1)

The cross-domain Euclidean distance between two branch’s

outputs is defined as follows:

D(xS , xI) =
∣∣∣∣∣∣FS
θS ,θC

(xS ) − F I
θI ,θC

(xI)
∣∣∣∣∣∣

2
(2)
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Then the contrastive loss can be written as:

LC(Y, xS , xI) =
1
2

(1 − Y)D2(xS , xI) +

1
2

Y{m − D2(xS , xI)}+
(3)

where {.}+ is hinger loss function. Parameter m is a margin1

defining an acceptable threshold for xS and xI to be considered2

as dissimilar.3

The triplet loss, on the other hand, maintains a relative dis-

tance between the anchor example and both a similar example

and a dissimilar example. The function accepts an input triplet

of form (xS , xI
+, xI

−) consisting an anchor sketch example xS , a

similar image xI
+, and a dissimilar one xI

−. The triplet is then

given by:

LT (xS , xI
+, x

I
−) =

1
2
{m + D2(xS , xI

+) − D2(xS , xI
−)}+ (4)

To accommodate the input triplet (xS , xI
+, xI

−), the CNN net-4

work consists of three branches: a sketch branch (anchor) and5

two identical image branches (positive and negative). The value6

of margin m is fixed at 0.2 in all of our experiments.7

3.2. Dimensionality reduction8

A compact representation is often desirable to allow viable9

implementation of visual search in systems with processing,10

battery and memory constraints. In order to learn the dimen-11

sionality reduction during the training stage we add an inter-12

mediate fully-connected (FC) layer without post-activation. As13

illustrated in Fig. 1 for the SketchANet-AlexNet, an embed-14

ding layer lowerdim is added between layer FC7 (D = 4096)15

and the output layer FC8 (D = 250). By not adding an activa-16

tion (ReLU) layer, we prevent the embedding layer to become17

a bottleneck in the network. Note that from the perspective of18

the softmax-loss layer the connection from FC7 to FC8 is lin-19

ear. We empirically verify that during training the performance20

of the classification layer is not affected whether lowerdim is21

integrated in the architecture or not. Dimensionality reduction22

is tested in subsec. 4.5. Further gains in compactness could be23

explored e.g. via product quantization as [31] but such opti-24

mizations are beyond the scope of this paper.25

3.3. Training procedure 26

We now describe a multi-stage training strategy for all net-

work configurations. Although this strategy is designed for

sketch-photo mapping, it can be applied to other cross-domain

learning problems. Inspired from curriculum learning [39], we

trained our model by giving it multiple learning tasks, one-by-

one with increasing difficulties. Denote LE and LR the cross-

entropy and regularization losses:

LE(z) = − log(
ezy∑
i ezi

) (5)

LR(θ) =
1
2

∑
i

θ2
i (6)

Our training procedure consists of 4 stages (Fig. 1): 27

– Stage 1: train unshared layers Train the sketch and photo

branches independently using a softmax loss, using pre-trained

model if possible. This is purely a classification task which

focuses on learning a representative model for each domain:

arg min
θS ,θC

∑
i

LE(FS (xS
i )) + λLR(θS , θC) (7)

arg min
θI ,θC

∑
i

LE(F I(xi
I)) + λLR(θI , θC) (8)

where λ is the weight decay term. Note: in eqn. 7 and 8 θC was 28

learned independently since no joint training is implemented at 29

this stage. 30

– Stage 2: train shared layers We form a double-branch

network, freeze the unshared layers which were already learned

during stage 1. Next, we use contrastive loss together with soft-

max loss to train the shared layers. The use of softmax loss

helps the sharing layers to learn discriminative features from

both domains, whilst contrastive loss (eqn. 3) provides an early

step of regression to bring the two domains together:

arg min
θC

∑
i

LE(FS (xS
i ))+

∑
i

LE(F I(xI
i )) +

α
∑

i

LC(Yi, xS
i , x

I
i ) + λLR(θC)

(9)

where α is weight of the regression term. We set α = 2.0 in all 31

experiments. 32

– Stage 3: train the whole network Unfreeze all frozen lay-

ers, form a triplet network and train it with triplet (eqn. 4) and

softmax loss functions. We begin the training with two losses
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contributing equally, then later increase loss weight of the triplet

function (α = 2.0) to steer the learning towards regression:

arg min
θS ,θI ,θC

∑
i

LE(FS (xS
i )) +

∑
i

LE(F I(xI
i+)) +

∑
i

LE(F I(xI
i−)) +

α
∑

i

LT (xS
i , x

I
i+, x

I
i−) + λLR(θS , θI , θC)

(10)

– Stage 4: (Optional) Repeat stage 3 on any auxiliary1

sketch-photo datasets available to further refine the model.2

Our proposed training procedure allows the shared and un-3

shared layers to be learned independently at separate stages.4

The unshared layers of each branch should learn unique features5

distinctive for its domain without being polluted from other do-6

main (stage 1). The shared layers should learn common features7

(usually high level) between the two domains by comparing and8

contrasting low level features from both domains (stage 2). Fi-9

nally, the whole network is adjusted/refined using triplet loss10

(stage 3-4).11

Although contrastive and triplet losses are crucial in regres-12

sion learning, we find them not tight enough to regulate the13

training. That is why a softmax loss layer is always included in14

our network at every training stage since it provides a stricter15

regularization. Our findings are consistent with the work in16

[6, 35] claiming the softmax loss plays an important part for17

convergence of the training. On the other hands, our approach18

differs from [6, 35] in that it allows partial sharing across19

branches; which further reduces overfitting (since number of20

training parameters are significantly reduced) while retaining21

the learning flexibility for each domain.22

3.4. Data augmentation23

Data augmentation plays an important role in preventing24

overfitting, especially when training data is limited. In all ex-25

periments we apply the following augmentation techniques for26

both sketch and photo: random crop (crop size 225x225 for27

SketchANet, 227x227 for Alexnet and 224x224 for VGG and28

Inception), random rotation in range [−5, 5] degrees, random29

scaling in range [0.9, 1.1] and random horizontal flip.30

We also propose an augmentation method applicable for31

sketches only. For sketches with at least N strokes (N = 1032

in our experiments) we divide them into four equal groups of 33

strokes in drawing order. The first group contains the most im- 34

portant strokes — related to the more coarse structure of the 35

object — and it is always kept. A new sketch is created by 36

randomly discarding some of the other groups. This technique 37

is inspired by Yu et al. [23, 5] who observe that people tend 38

to draw sketches in stages at distinct levels of abstraction. We 39

observed a ∼1% mAP improvement across the board using this 40

random stroke removal augmentation method on the Flickr15k 41

benchmark. 42

4. Experiments 43

We evaluated our training strategies on all variants of the 44

sketch and image architectures and weight sharing schemes to 45

determine the best performing embedding for SBIR. In particu- 46

lar we evaluated the ability of the network to generalize beyond 47

the categories to which it is exposed during training. This is im- 48

portant for SBIR in the wild, where one cannot reasonably train 49

with a sufficiently diverse sample of potential query images. We 50

also investigated the impact of volume of sketch data used to 51

train the network, and the impact of using photos or their edge- 52

maps during training (in addition to the various weight sharing 53

variants). 54

The structure of this section is as follows. We introduces train 55

and test datasets in subsec. 4.1, experimental settings in sub- 56

sec. 4.2. We evaluate generalization properties in subsec. 4.3, 57

network architectures and sharing in subsec. 4.4, and dimen- 58

sional reduction in subsec. 4.5. Finally, subsec. 4.6 compares 59

our proposed approach with state-of-art algorithms. 60

4.1. Datasets 61

We trained and evaluated our networks using five sketch 62

datasets: 63

– TU-Berlin-Class [2] (training stage 1-3) for sketch classi- 64

fication comprising 250 categories of sketches, 80 per category, 65

crowd-sourced from 1350 different non-expert participants with 66

diverse drawing styles; 67

– TU-Berlin-Retr [15] (testing) takes into account not only 68

the category of the retrieved images but also the relative order of 69
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Fig. 2. 4-stage training of the SketchANet-AlexNet model and visualization of the first convolution layer on sketch and image branch.

the relevant images. The dataset consists of 31 sketches and 401

ranked images for each sketch (1240 total images), mixed with2

a set of 100,000 distracting Flickr photos. The authors propose3

a Kendal score as the evaluation method;4

– Sketchy [6] (model fine-tuning at stage 4) is a fine-grained5

dataset in which each photo image has ∼5 instance-level match-6

ing sketches drawn by different subjects. In total it has 12,5007

photo images and 75,471 corresponding sketches of 125 cate-8

gories of which 100s exist in the TU-Berlin-Class and 25s are9

the new categories;10

– Flickr15K [3] (testing) is a large scale category-level11

dataset. It has labels for 33 categories of sketches, 10 sketches12

per category drawn by 10 non-expert sketchers. It also has a13

different number of photo images per category totalling 15,02414

images crawled from FlickR. The authors suggest to use Mean15

Average Precision (mAP) as the performance metric;16

– Saavedra-SBIR [40] (testing) another category-level17

dataset, consisting 53 sketches and 1326 images organized into18

50 classes. Similar to Flickr15K, the authors recommended19

mAP for evaluation.20

It is important to note that the Flickr15K and TU-Berlin-Retr21

datasets are independent from the training ones in term of not22

only categories but also depiction styles. The TU-Berlin-Class 23

and Sketchy covers common objects frequently encountered in 24

daily life (stationary, vehicles, food, bird, mammal,...). The 25

Flickr15K contains mostly landmarks and buildings (e.g. Eif- 26

fel tower, Colosseum, Taj Mahal,...) while the TU-Berlin-Retr 27

tends to be scenery specific (Fig. 3 (a-d)). On the other hand, 28

Saavedra-SBIR happens to share 30 common categories with 29

TU-Berlin-Class, but its query set contains distinct sketches 30

with exceptionally high level of details (Fig. 3 (e)). These set- 31

tings motivate a need for good generalization beyond training. 32

Additionally, it helps to avoid bias when comparing with non- 33

learning methods which do not require any training data. 34

As TU-Berlin-Class comprises only sketches, in order to 35

obtain our training triplets we automatically generated per- 36

category photograph sets by querying the 250 category names 37

on Creative Commons image repositories. The Flickr API was 38

used to download images from 184 categories. Google and 39

Bing engines were used for the remaining 66 categories which 40

are mainly human body parts (e.g. brain, tooth, skeleton) and 41

fictional objects (e.g. UFO, mermaid, dragon) where Flickr 42

content is sparse. We manually selected the 100 most relevant 43

photos per category, forming a 25k training corpus (Flickr25K). 44
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(a) TU-Berlin-Class [2] and Flickr25K (b) Sketchy [6]

(c) Flickr15K [3] (d) TU-Berlin-Retr [15] (e) Saavedra-SBIR [40]

Fig. 3. Example sketches and images of the training (a-b) and test (c-e) datasets.

4.2. Experimental settings1

We followed the four training stages outlined in subsec. 3.3.2

Photo images are first resized retaining aspect ratio so that3

maximum dimension is 256 pixels, then padded with dupli-4

cate pixels along the edges to form unified 256x256 input data.5

Sketches are also centred in 256x256 canvas such that the6

longest side of its bounding box is fixed at 200 pixels. Since7

the training procedure involves multiple sketch datasets whose8

stroke thickness may vary, all sketches are skeletonized to have9

1-pixel stroke width using the morphological thinning method10

described in [41].11

Data augmentation is implemented as in subsec. 3.3. One ex-12

ception is the implementation of random flip in stage 4 where13

the finegrained Sketchy dataset is being used. To keep the14

finegrain properties, random flip is performed jointly over the15

anchor-positive pair. We do not do the same with random rota-16

tion and scaling since the rotation range [-5,5] and resizing scale17

[0.9, 1.1] are relatively small and can account for the alignment18

error between the images and corresponding sketches.19

We used Caffe the deep-learning library [42] to train our20

models. When training the contrastive and triplet networks21

(stage 2 onward), the anchor-positive and negative pairs are22

selected randomly. However, depending on the dataset, a 23

pair/triplet can be of either categorical-level (where the posi- 24

tive image has the same category label as the anchor’s and the 25

negative image is from a different category) or instance-level 26

(the positive image has the same instance label i.e. same ob- 27

ject, while the negative image has the same category label but 28

different instance’s). We used categorical-level pair for stage 29

2 and categorical-level triplet for stage 3 since the TU-Berlin- 30

Class dataset only supports category matching. For the Sketchy 31

dataset (stage 4), we combined both categorical and instance- 32

levels in triplet formation. Specifically, for a given training 33

sketch there is 20% chance a categorical triplet is formed and 34

80% chance for an instance-level triplet. This helps to learn 35

a model that is both intra- and inter-categorical representative. 36

Our idea is similar to the Quadruplet network [35] but instead 37

of introducing a new quaduplet input format and a new loss 38

function we achieve it via data selection. We do not imple- 39

mented hard negative mining since the instance-level selection 40

of triplets in stage 4 is already hard enough for the training 41

to properly converge. An example of training a SketchANet- 42

AlexNet model is illustrated in Fig. 2. 43
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4.3. Generalization1

We first report the results of generalization capability of our2

triplet networks when varying amount of training data. A series3

of experiments was carried out, starting with a subset of 20 ran-4

dom training categories and 20 sketches per category, up to the5

whole training dataset. As the TU-Berlin-Class has 80 sketches6

per category, the remaining sketches of the chosen categories7

were used for validation. For simplicity we used SketchANet8

for the sketch branch and AlexNet for image branch. We mod-9

ified the SketchANet design to enable sharing with AlexNet.10

Specifically, layers 1-3 of the sketch branch have SketchANet11

architecture, layers 6-7 mirror AlexNet while the middle layers12

4-5 we have modified from SketchANet as a hybridization of13

the two designs. The modified sketch branch is trained from14

scratch while the image branch is initialized using the Ima-15

geNet pre-trained model [4]. Apart from testing generalization16

we aimed to compare and contrast this partial sharing design17

with the fully shared and no-share architectures; also to ver-18

ify whether our sketch-photo direct matching is better than the19

sketch-edgemap reported in [31].20

Fig. 4 (top) shows that the performance is benefited by in-21

creasing the number of training categories. All five network22

designs achieved near-linear improvement of retrieval perfor-23

mance against Flickr15k benchmark (discarding the four inter-24

secting categories with the training set) with exposure to more25

diverse category set during training. The mAP of all models26

jumped by ∼20% when raising training data from 20 to 250 cat-27

egories. Fig. 4 (middle) has similar trend when we keep number28

of training categories fixed at 250s and vary number of training29

sketches per category. As the results of seeing more data during30

training, all models achieve an improvement of up to 4% mAP31

on Flickr15k. Fig. 4 (bottom) depicts that number of training32

samples is not the only factor that matters most. Here we in-33

crease the number of categories from 20s to 80s while at the34

same time decreasing per category samples, keeping the train-35

ing volume fixed at 4800 sketches. The general trend is an im-36

provement as number of categories increase. We conclude that37

category diversity is crucial for training a generalized network.38
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Fig. 4. Experiments with generalisation capability of our learned mod-
els w.r.t. (top) number of training categories (20 sketches per category);
(middle) number of training sketches per category (250 categories); (bot-
tom) fixed training volume (fixed 4800 training samples); tested on the
Flickr15K benchmark.

All three above figures report the superior performance of 39

the partially shared triplet architecture against the no-share 40

and fully shared networks regardless of its matching formats 41

(sketch-edgemap or sketch-photo). Also, the sketch-photo 42

models outperforms the sketch-edgemap ones by a large mar- 43

gin. This is understandable since working directly on photo im- 44

ages enable the network access full information from raw data. 45

In contrast, during edge extraction, certain information such as 46

colour and texture that may be distinctive to identify the objects 47

of interest will be lost, leaving the network with less informa- 48

tive data to learn from. 49

For completeness, Fig. 5 compares our multi-stage train- 50

ing method (subsec. 3.3) with Siamese and Triplet models us- 51

ing one-shot training. The network design is the same i. e. 52
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Fig. 5. Multi-stage training compared with single-stage models, tested on
Flickr15K.

SketchANet-AlexNet for three models but the Siamese and1

Triplet models are trained within a single training stage (with2

weights also initialized from pretrained models). We observed3

a 5% improvement in mAP with our multi-stage model. Note4

all three box-plots have large interquartile range (IQR) and5

whiskers, which illustrates a great performance diversity among6

sketch queries e. g. clean sketches can achieve 100% retrieval7

precision while messy sketches may end up ∼0% performance.8

4.4. Convnet architecture settings and parameter sharing9

We experimented various architectures among SketchANet,10

AlexNet, VGG16 and InceptionV1 for sketch and image11

branches. For each sketch-image architecture combination, we12

test all possible sharing options and report the best performed13

model. For example, the fully connected layer 7 (FC7) and later14

in AlexNet and VGG are share-able while SketchANet and In-15

ceptionV1 can only share parameters after the dimensional re-16

duction layer (lowerdim in Fig. 1).17

Table 1 shows the performance of all available combinations18

of sketch-image designs on the Flickr15k benchmark. Again,19

we found that for certain sketch-photo architecture combina-20

tions there always exists a partial sharing configuration better21

than the full-share and no-share ones. For example, AlexNet-22

VGG16 has the highest performance (39.77% mAP) when shar-23

ing from layer FC7, SketchANet-AlexNet performs the best at24

sharing from FC6. InceptionV1 has a distinct architecture how-25

ever we found that sharing all layers following lowerdim (i.e.26

the n-way classifier FC layer) results in a better mAP.27

It is worth noting that the sketch branch should not be 28

more complex than the image branch. The AlexNet-VGG16, 29

AlexNet-InceptionV1 and VGG16-InceptionV1 designs all 30

outperform their VGG16-AlexNet, InceptionV1-AlexNet and 31

InceptionV1-VGG16 counterparts by 2-7% mAP. Additionally, 32

when InceptionV1 is selected for the image branch, choos- 33

ing SketchANet for the sketch branch is more efficient than 34

AlexNet or VGG16 although SketchANet is simpler and has 35

fewer parameters than the two others. We hypotheses that hav- 36

ing an over-complicated design for the sketch branch can cause 37

it over-trained in a contrastive or triplet network, especially with 38

limited training data. 39

Nevertheless, using identical architecture for both sketch and 40

image branches results in the highest performance (the diago- 41

nal line of Table 1). We conjecture that partially shared sketch 42

and image branches may enable more balanced weight updates 43

during back-propagation, mitigating against over-training in a 44

single branch. This may prove a useful strategy more gener- 45

ally in combating over-fitting alongside popular methods such 46

as regularization and dropout. 47

Details of the weight sharing experiments for identical 48

branch (i.e. homogeneous) triplet networks are shown in 49

Fig. 6. The best sharing configurations for AlexNet-AlexNet 50

and VGG16-VGG16 are from conv5 and block5 respectively. 51

For InceptionV1-InceptionV1, there is a drop in performance at 52

Inception block 4d where the second auxiliary classifier (ten- 53

drill) is attached. Removing the auxiliary classifiers (the main 54

classifiers at top of the network remain shared), we achieve 55

peak performance when sharing from inception layer 4e. In 56

all three cases the no-share configuration under-performs both 57

the full-share and partial-sharing performace (the performance 58

gain ranges from 7% for VGG16 to 14% for AlexNet). 59

4.5. Dimensionality reduction 60

Fig. 7 reports the mAP and retrieval time of our best model 61

in Table 1 (InceptionV1-InceptionV1) when varying output di- 62

mension within range D ∈ [64, 1024]. In general the mAP 63

steadily improves as size of lowerdim increases. We achieve a 64

record performance of 55.06% mAP on Flickr15K at D=1024. 65
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Fig. 6. From full-share to no-share: effects of partial sharing on accuracy (a) AlexNet-AlexNet; (b) VGG16-VGG16; and (c) InceptionV1-InceptionV1
networks, evaluated over FlickR15K.

Flickr15K SBIR mAP(%) Image branch
SketchANet [31] AlexNet VGG16 InceptionV1

Sketch
branch

SketchANet 24.45 37.41 36.80 41.99
AlexNet - 45.16 39.77 41.65
VGG16 - 36.22 49.99 40.74
InceptionV1 - 34.98 38.77 51.11

Table 1. Performance of various network designs on the FlickR15K benchmark. Note: (i) SketchANet-SketchANet is the only sketch-edgemap model
(reported in [31]), the rest are sketch-photo models; (ii) lowerdim is fixed at 128-D for all models.
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Fig. 7. Accuracy and speed performance of InceptionV1-InceptionV1
model with different output dimension.

However, retrieval time also linearly increases (note the x-axis1

of Fig. 7 is log scale). On a commodity 2.80GHz Intel i7 work-2

station, a simple linear search using a single CPU thread takes3

from 3ms to 34ms per query when increasing lowerdim’s di-4

mension from 64-D to 1024-D.5

Considering the trade off between speed and accuracy we se-6

lected D=256 as our final model (53.26% mAP, 4.4ms retrieval7

time). This allows us to encode the whole Flickr15K dataset8

using just 15MB of memory, or 1MB footprint for every 1K im-9

ages. Since the linear search complexity is O(ND) and feature 10

extraction time is averagely 15.2ms per query (on a GeForce 11

GTX 1070 GPU), in theory our model can retain interactive 12

speed (i. e. retrieval time less than 1 second) when querying 13

up to 3M images. For larger datasets, more efficient indexing 14

methods e. g. kd-tree, inverted index,... are recommended. 15

4.6. Benchmark evaluation 16

We compare our selected model (InceptionV1-InceptionV1 17

with partial sharing from inception block 4e, output dimension 18

256-D) with other approaches in the literature. The first bench- 19

mark is the defacto Flickr15k [3] datasets used in ∼20 published 20

SBIR algorithms and variants. Some key approaches are: 21

• Hand-crafted approaches: these methods use hand-crafted 22

features and often dictionary learning to deliver global 23

fingerprint for each image. Notable algorithms include 24

Structure Tensor [16], Shape Context [43], Self Similarity 25

(SSIM) [44], SHoG [15], SHELO and its variants [22, 45], 26

HLR and its variants [46], KeyShapes [7], GF-HoG and its 27

color version [17, 3] and Perceptual Edge [20]. 28
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Fig. 8. Representative SBIR results on Flickr15K using (left) sketches and (right) images as queries. For each query, two sets of results are returned, one
for intra-domain and the other for cross domain search. Red bounding boxes indicate false positives.

Fig. 9. t-sne visualization of the Flickr15K dataset within our best performing embedding (InceptionV1-InceptionV1). Sketches and photographs of objects
are mapped to similar locations in 128-D space.
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• CNN-related approaches: use deep features with vari-1

ous architecture settings and loss functions. These in-2

clude Siamese network [26], Triplet sketch-edgemap net-3

work [31], Asymmetric feature map (AFM) [47], Quadru-4

plet MT [35], Query-adaptive CNN with re-ranking [24].5

The results are reported in Table 2. Our partially-shared net-6

work outperforms the rest by a significant margin even at earlier7

training stages. Specifically, our proposed approach leads the8

closest method by 17% mAP and achieves twice performance9

as the best hand-craft method (LKS) while having 5 times more10

compact descriptor. This further demonstrates the needs of11

a partial sharing network and the advantages of multi-stage12

training in solving a cross-domain problem. Table 2 explores13

how much improvement is obtained following each individual14

stage of the multiple stage training process. Table 1 and Fig.615

indicates a deeper backbone network such as InceptionV1-16

InceptionV1 and an appropriate partial weight sharing strategy17

can improve 7-15% mAP. Fig. 4 shows the importance of train-18

ing data volume, especially for ensuring generalization beyond19

training categories, and that data augmentation can improve a20

further 1% mAP.21

Fig. 10 depicts the precision-recall (PR) curves of our pro-22

posed approaches along with another CNN-related method and23

one of the state-of-art hand-crafted approaches on Flickr15k.24

While the PR curve of Color GF-HoG [17] is smooth the deeply25

learned (CNN) approaches have irregular PR curves. Neverthe-26

less, there is an improvement in the level of smoothness from27

the curves stage 2 to 4, indicating potential of our model to gen-28

eralise to data “in the wild”, given sufficient category diversity29

in the training data. Fig. 9 shows the embedding of Flickr15k30

sketches and images. SBIR examples are given in Fig. 8.31

Next, we evaluated over Saavedra-SBIR (using mAP) and32

TU-Berlin-Retr (using Tb proposed in [15]). Table 3 and 433

show our final model also achieving state-of-art performance.34

While the training stages 2-3 is supplied with categorical-level35

data only, the finetuning stage 4 on Sketchy helps to learn more36

detailed representation of sketches and images, contributing to37

an improvement of 4% mAP on Saavedra-SBIR and 1.5 Tb on38

Method Dim. mAP (%)
Partial sharing convnet (stage 4) 256 53.26
Partial sharing convnet (stage 3) 256 41.13
Sketchy triplet [6]† 1024 35.91
Partial sharing convnet (stage 2) 256 34.83
Query-adaptive re-ranking CNN [24] 5120 32.30
Quadruplet MT [35] 1024 32.16
Asymmetric feature map (AFM) [47] 243 30.40
Learned KeyShapes (LKS) [7] 1350 24.50
Triplet sketch-edgemap [31] 100 24.45
Rst-SP-SHELO [22] 3060 20.05
Siamese with Contrastive Loss [26] 64 19.54
Perceptual Edge [20] 3780 18.37
Color GF-HoG [17] 5000 18.20
HLR+S+C+R [46] 2000 17.10
SHELO [45] 1296 12.36
GF-HoG [3] 3500 12.22
SHoG [15] 1000 10.93
SSIM [44] 500 9.57
SIFT [48] 1000 9.11
Shape Context [43] 3500 8.14
Structure Tensor [16] 500 7.98

Table 2. SBIR comparison results (mAP) on the Flickr15K benchmark.
Methods that do not originally report on Flickr15K are marked with †.
Our proposed convnet uses InceptionV1 architecture for both sketch and
image branches with partial sharing from inception block 4e.
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Fig. 10. PR curve of the proposed approaches compared with a state-of-
the-art non-learning method [17].

TU-Berlin-Retr as opposed to the closest approaches. 39

In Fig. 11, we analyze the retrieval performance of the query 40

sketches whose categories are known to the model during train- 41

ing and compare with those are not. The queries with seen cat- 42

egories indeed have better retrieval rate than those belong to 43

unseen categories. However, our final model (stage 4) gains the 44

highest retrieval precision on these challenging queries. Also, 45
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Method Dim. Tb

Partial sharing convnet (stage 4) 256 44.8
Quadruplet MT [35] 1024 43.3
Sketchy triplet [6]† 1024 37.5
Partial sharing convnet (stage 3) 256 35.6
Partial sharing convnet (stage 2) 256 31.8
KeyShapes [21] - 28.9
SHoG [15] 1000 27.7
Triplet sketch-edgemap [31] 100 22.3
HoG (global) [15] 768 22.3
Structure Tensor [16] 500 22.3
Spark [15] 1000 21.7
HoG (local) [49] 1000 17.5
Shape Context [43] 3500 16.1

Table 3. SBIR comparison results (using Kendal’s rank correlation coeffi-
cient, Tb) on TU-Berlin-Retr dataset [15].

Method Dim. mAP (%)
Partial sharing convnet (stage 4) 256 65.99
Partial sharing convnet (stage 3) 256 63.37
Sketchy triplet [6]† 1024 62.02
Partial sharing convnet (stage 2) 256 57.15
LKS [7] 2400 32.51
Rst-SP-SHELO [22] 3060 29.36
SHELO [45] 1296 27.66
HoG [49] 900 23.55
HELO [40] 72 14.32

Table 4. SBIR comparision results on Saavedra dataset [40].
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Fig. 11. Average retrieval precision by query groups on Saavedra-SBIR.

our model achieves the smallest performance gap between the1

“seen” and “unseen” groups, which further demonstrates the2

generalization capability of our model.3

5. Conclusion 4

We proposed a hybrid CNN exploiting both contrastive and 5

triplet loss architectures to learn a joint sketch-photo embed- 6

ding suitable for measuring visual similarity in SBIR. We pre- 7

sented comprehensive experiments exploring variants of our 8

triplet CNN, contrasting appropriate strategies for weight shar- 9

ing, dimensionality reduction, and training data pre-processing 10

and reporting on the generalization capabilities across cat- 11

egories including object categories unseen during training. 12

Training sketches were derived from the two largest available 13

sketch datasets: the TU-Berlin dataset of Eitz et al. and the 14

Sketchy dataset of Sangkloy et al. [6]. The model was trained 15

using exemplar triplets formed using these query sketches aug- 16

mented by positive and negative training photos from the web. 17

Our optimal network configuration comprised a triplet archi- 18

tecture with branch structure derived from GoogLeNet with 19

partially-shared weights, and achieved 53.3% mAP over the 20

Flickr15k benchmark; more than 17% increase in performance 21

accuracy over the published state of the art (Table 2). 22

Further work might build upon this performance gain explor- 23

ing multi-domain learning, for example sketch-photo-3D mod- 24

els mapping or multi-style work-art retrieval. Recently deep 25

convolutional generative-adversarial networks (DC-GAN) have 26

shown great potential for sketch driven synthesis [50] and so 27

might offer an interesting avenue for SBIR as an alternative 28

deep representation for sketch-photo matching. Currently DC- 29

GANs suffer limitations in object class diversity when trained 30

that could be investigated as here. 31
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Video S1. SBIR demo [CAG-D-17-00301- 121

supplm video.mp4]. 122

A video demo of our proposed model, InceptionV1- 123

InceptionV1 256-D partial sharing from inception-4e, depicts 124

SBIR by an amateur sketcher on a tablet running Android 125

5.1.1. In several parts of the demo, the sketcher intentionally 126

draws different objects by adding incremental line strokes to 127

their existing sketches, and observes changes in the returned 128

results. This drawing procedure helps sketchers to refine their 129

queries, also to understand which strokes are important for 130

retrieving desired photo images. 131
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